JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REFLECTION PRINCIPLES FOR GENERAL WIENER FUNCTION SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REFLECTION PRINCIPLES FOR GENERAL WIENER FUNCTION SPACES
Pierce, Ian; Skoug, David;
  PDF(new window)
 Abstract
It is well-known that the ordinary single-parameter Wiener space exhibits a reflection principle. In this paper we establish a reflection principle for a generalized one-parameter Wiener space and apply it to the integration of a class of functionals on this space. We also discuss several notions of a reflection principle for the two-parameter Wiener space, and explore whether these actually hold.
 Keywords
generalized Wiener space;Yeh-Wiener space;generalized Brownian motion;distribution of supremum;
 Language
English
 Cited by
1.
THE TRANSLATION THEOREM ON THE GENERALIZED ANALOGUE OF WIENER SPACE AND ITS APPLICATIONS,;

충청수학회지, 2013. vol.26. 4, pp.735-742 crossref(new window)
1.
THE TRANSLATION THEOREM ON THE GENERALIZED ANALOGUE OF WIENER SPACE AND ITS APPLICATIONS, Journal of the Chungcheng Mathematical Society, 2013, 26, 4, 735  crossref(new windwow)
 References
1.
E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. (2) 30 (1984), no. 2, 305-321.

2.
P. Billingsley, Convergence of probability measures, Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, 1999.

3.
R. H. Cameron, A Simpson rule for the numerical evaluation of Wiener's integrals in function space, Duke Math. J. 18 (1951), 111-130. crossref(new window)

4.
Robert H. Cameron and David A. Storvick, Two related integrals over spaces of contin- uous functions, Pacific J. Math. 55 (1974), 19-37. crossref(new window)

5.
S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925-2948. crossref(new window)

6.
S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), no. 1, 37-62. crossref(new window)

7.
S. J. Chang and H. S. Chung, Generalized Fourier-Wiener function space transforms, J. Korean Math. Soc. 46 (2009), no. 2, 327-345. crossref(new window)

8.
S. J. Chang, H. S. Chung, and D. Skoug, Integral transforms of functionals in $L^2(C_{a,b}\left[0,T \right])$, J. Fourier Anal. Appl. 15 (2009), no. 4, 441-462. crossref(new window)

9.
S. J. Chang, Convolution products, integral transforms and inverse integral transforms of functionals in $L^2(C_0\left[0,T \right])$, Integral Transforms Spec. Funct. 21 (2010), no. 1-2, 143-151. crossref(new window)

10.
S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first varia- tion on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393.

11.
J. A. Clarkson and R. C. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), no. 4, 824-854. crossref(new window)

12.
D. Freedman, Brownian Motion and Diffusion, Holden-Day, San Francisco, 1971.

13.
V. Goodman, Distribution estimates for functionals of the two-parameter Wiener process, Ann. Probability 4 (1976), no. 6, 977-982. crossref(new window)

14.
I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics 113, Springer-Verlag, New York, 1991.

15.
L. Mattner, Complex differentiation under the integral, Nieuw Arch.Wiskd. (5) 2 (2001), no. 1, 32-35.

16.
S. R. Paranjape and C. Park, Distribution of the supremum of the two-parameter Yeh-Wiener process on the boundary, J. Appl. Probability 10 (1973), 875-880. crossref(new window)

17.
I. Pierce and D. Skoug, Comparing the distribution of various suprema on two-parameter Wiener space. To appear in Proc. Amer. Math. Soc.

18.
D. Skoug, Converses to measurability theorems for Yeh-Wiener space, Proc. Amer. Math. Soc. 57 (1976), no. 2, 304-310. crossref(new window)

19.
D. Skoug, Feynman integrals involving quadratic potentials, stochastic integration formulas, and bounded variation for functions of several variables, Rend. Circ. Mat. Palermo (2) Suppl. No. 17 (1987), 331-347.

20.
J. Yeh, Approximate evaluation of a class of Wiener integrals, Proc. Amer. Math. Soc. 23 (1969), 513-517.

21.
J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. 95 (1960), 433-450. crossref(new window)

22.
J. Yeh, Cameron-Martin translation theorems in the Wiener space of functions of two variables, Trans. Amer. Math. Soc. 107 (1963), 409-420. crossref(new window)

23.
J. Yeh, Stochastic Processes and the Wiener Integral, Pure and Applied Mathematics, 13, Marcel Dekker Inc., New York, 1973.

24.
G. J. Zimmerman, Some sample function properties of the two-parameter Gaussian process, Ann. Math. Statist. 43 (1972), 1235-1246. crossref(new window)