JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSET METRICS ADMITTING ASSOCIATION SCHEMES AND A NEW PROOF OF MACWILLIAMS IDENTITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSET METRICS ADMITTING ASSOCIATION SCHEMES AND A NEW PROOF OF MACWILLIAMS IDENTITY
Oh, Dong Yeol;
  PDF(new window)
 Abstract
It is known that being hierarchical is a necessary and sufficient condition for a poset to admit MacWilliams identity. In this paper, we completely characterize the structures of posets which have an association scheme structure whose relations are indexed by the poset distance between the points in the space. We also derive an explicit formula for the eigenmatrices of association schemes induced by such posets. By using the result of Delsarte which generalizes the MacWilliams identity for linear codes, we give a new proof of the MacWilliams identity for hierarchical linear poset codes.
 Keywords
MacWilliams identity;association scheme;poset code;poset metric;
 Language
English
 Cited by
 References
1.
E. Bannai and T. Ito, Algebraic Combinatorics. I, Association schemes, The Benjamin/Cummings Publishing Co., Amsterdam, 1984.

2.
R. C. Bose and D. M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959), 21-38. crossref(new window)

3.
R. C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Assoc. 47 (1952), 151-184. crossref(new window)

4.
A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Berlin, Springer-Verlag, 1989.

5.
R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57-72. crossref(new window)

6.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts. Suppl. 10 (1976), 134 pp.

7.
P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory 44 (1998), no. 6, 2477-2504. crossref(new window)

8.
S. T. Dougherty and M. M. Skriganov, MacWilliams duality and the Rosenbloom- Tsfasman metric, Moscow Math. J. 2 (2002), no. 1, 81-97.

9.
J. N. Guti'errez and H. Tapia-Recillas, A MacWilliams identity for poset-codes, Congr. Number. 133 (1998), 63-73.

10.
Y. Jang and J. Park, On a MacWilliams identity and a perfectness for a binary linear (n, n − 1, j)-poset code, Discrete Math. 265 (2003), no. 1-3, 85-104. crossref(new window)

11.
D. S. Kim and J. G. Lee, A MacWilliams-type identity for linear codes on weak order, Discrete Math. 263 (2003), no. 1-3, 181-194.

12.
H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1424-1431. crossref(new window)

13.
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1994.

14.
F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North- Holland, Amsterdam, 1977.

15.
W. J. Martin and D. R. Stinson, Association schemes for ordered orthogonal arrays and (T,M, S)-nets, Canad. J. Math. 51 (1999), no. 2, 326-346. crossref(new window)

16.
H. Niederreiter, Point sets and sequence with small discrepancy, Monatsh. Math. 104 (1987), no. 4, 273-337. crossref(new window)

17.
H. Niederreiter, A combinatorial problem for vector spaces over finite fields, Discrete Math. 96 (1991), no. 3, 221-228. crossref(new window)

18.
H. Niederreiter, Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes, Discrete Math. 106/107 (1992), 361-367. crossref(new window)

19.
M. Y. Rosenbloom, M. A. Tsfasman, M. Y. Rosenbloom, and M. A. Tsfasman, Codes for m-metric, Probl. Pered. Inf. 33 (1997), 55-63 (Russian); English translation: Probl. Inform. Transm. 33 (1997), 45-52.

20.
M. M. Skigrnov, Coding theory and uniform distibutions, Algebra i Analiz 13 (2001), 191-239 (Russian); English translation: St. Petesburg Math. J. 13 (2002), 301-337.

21.
O. Tamaschke, Zur Theorie der Permutationsgruppen mit regularer Untergruppe. I, Math. Z. 80 (1963), 328-354

22.
O. Tamaschke, Zur Theorie der Permutationsgruppen mit regularer Untergruppe. II, Math. Z. 80 (1963), 443-465.