1.
E. Bannai and T. Ito, Algebraic Combinatorics. I, Association schemes, The Benjamin/Cummings Publishing Co., Amsterdam, 1984.
2.
R. C. Bose and D. M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959), 21-38.
3.
R. C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Assoc. 47 (1952), 151-184.
4.
A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Berlin, Springer-Verlag, 1989.
5.
R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57-72.
6.
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts. Suppl. 10 (1976), 134 pp.
7.
P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory 44 (1998), no. 6, 2477-2504.
8.
S. T. Dougherty and M. M. Skriganov, MacWilliams duality and the Rosenbloom- Tsfasman metric, Moscow Math. J. 2 (2002), no. 1, 81-97.
9.
J. N. Guti'errez and H. Tapia-Recillas, A MacWilliams identity for poset-codes, Congr. Number. 133 (1998), 63-73.
10.
Y. Jang and J. Park, On a MacWilliams identity and a perfectness for a binary linear (n, n − 1, j)-poset code, Discrete Math. 265 (2003), no. 1-3, 85-104.
11.
D. S. Kim and J. G. Lee, A MacWilliams-type identity for linear codes on weak order, Discrete Math. 263 (2003), no. 1-3, 181-194.
12.
H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1424-1431.
13.
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1994.
14.
F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North- Holland, Amsterdam, 1977.
15.
W. J. Martin and D. R. Stinson, Association schemes for ordered orthogonal arrays and (T,M, S)-nets, Canad. J. Math. 51 (1999), no. 2, 326-346.
16.
H. Niederreiter, Point sets and sequence with small discrepancy, Monatsh. Math. 104 (1987), no. 4, 273-337.
17.
H. Niederreiter, A combinatorial problem for vector spaces over finite fields, Discrete Math. 96 (1991), no. 3, 221-228.
18.
H. Niederreiter, Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes, Discrete Math. 106/107 (1992), 361-367.
19.
M. Y. Rosenbloom, M. A. Tsfasman, M. Y. Rosenbloom, and M. A. Tsfasman, Codes for m-metric, Probl. Pered. Inf. 33 (1997), 55-63 (Russian); English translation: Probl. Inform. Transm. 33 (1997), 45-52.
20.
M. M. Skigrnov, Coding theory and uniform distibutions, Algebra i Analiz 13 (2001), 191-239 (Russian); English translation: St. Petesburg Math. J. 13 (2002), 301-337.
21.
O. Tamaschke, Zur Theorie der Permutationsgruppen mit regularer Untergruppe. I, Math. Z. 80 (1963), 328-354
22.
O. Tamaschke, Zur Theorie der Permutationsgruppen mit regularer Untergruppe. II, Math. Z. 80 (1963), 443-465.