JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON CONTINUOUS MODULE HOMOMORPHISMS BETWEEN RANDOM LOCALLY CONVEX MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON CONTINUOUS MODULE HOMOMORPHISMS BETWEEN RANDOM LOCALLY CONVEX MODULES
Zhang, Xia;
  PDF(new window)
 Abstract
Based on the four kinds of theoretical definitions of the continuous module homomorphism between random locally convex modules, we first show that among them there are only two essentially. Further, we prove that such two are identical if the family of -seminorms for the former random locally convex module has the countable concatenation property, meantime we also provide a counterexample which shows that it is necessary to require the countable concatenation property.
 Keywords
random locally convex modules;()-topology;locally -convex topology;continuous module homomorphisms;
 Language
Korean
 Cited by
 References
1.
N. Dunford and J. T. Schwartz, Linear Operators, Part I, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988.

2.
D. Filipovic, M. Kupper, and N. Vogelpoth, Separation and duality in locally $L^0$-convex modules, J. Funct. Anal. 256 (2009), no. 12, 3996-4029. crossref(new window)

3.
T. X. Guo, Extension theorems of continuous random linear operators on random domains, J. Math. Anal. Appl. 193 (1995), no. 1, 15-27. crossref(new window)

4.
T. X. Guo, Module homomorphisms on random normed modules, Northeast. Math. J. 12 (1996), no. 1, 102-114.

5.
T. X. Guo, Some basic theories of random normed linear spaces and random inner product spaces, Acta Anal. Funct. Appl. 1 (1999), no. 2, 160-184.

6.
T. X. Guo, Survey of recent developments of random metric theory and its applications in China. II, Acta Anal. Funct. Appl. 3 (2001), no. 3, 208-230.

7.
T. X. Guo, The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani- Smulian theorem in complete random normed modules to stratification structure, Sci. China Ser. A 51 (2008), no. 9, 1651-1663. crossref(new window)

8.
T. X. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258 (2010), no. 9, 3024-3047. crossref(new window)

9.
T. X. Guo, Recent progress in random metric theory and its applications to conditional risk measures, Sci. China Math. 54 (2011), no. 4, 633-660. crossref(new window)

10.
T. X. Guo and S. B. Li, The James theorem in complete random normed modules, J. Math. Anal. Appl. 308 (2005), no. 1, 257-265. crossref(new window)

11.
T. X. Guo and G. Shi, The algebraic structure of finitely generated $L^0$(F,K)-modules and the Helly theorem in random normed modules, J. Math. Anal. Appl. 381 (2011), no. 2, 833-842. crossref(new window)

12.
T. X. Guo and X. Zhang, Stone's representation theorem of a group of random unitary operators on complete complex random inner product modules (in Chinese), Sci. Sin. Math. 42 (2012), no. 3, 181-202. crossref(new window)

13.
T. X. Guo and S. E. Zhao, On the random conjugate spaces of a random locally convex module, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 4, 687-996. crossref(new window)

14.
T. X. Guo, S. E. Zhao, and X. L. Zeng, On random convex analysis-the analytic foundation of the module approach to conditional risk measures, arXiv:1210.1848, (2012).

15.
T. X. Guo and L. H. Zhu, A characterization of continuous module homomorphisms on random semi-normed modules and its applications, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 1, 201-208. crossref(new window)

16.
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier/North-Holland, New York, 1983; Dover Publications, New York, 2005.

17.
M. Z. Wu, The Bishops-Phelps theorem in complete random normed modules endowed with the $({\varepsilon},{\lambda})$-topology, J. Math. Anal. Appl. 391 (2012), no. 2, 648-952. crossref(new window)

18.
M. Z. Wu, A further study on the Riemann-intergrability for abstract-valued functions from a closed real interval to a complete random normed module (in Chinese), Sci. Sin. Math. 42 (2012), no. 9, 897-903. crossref(new window)

19.
X. Zhang, On mean ergodic semigroups of random linear operators, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 4, 53-58. crossref(new window)

20.
X. Zhang, On conditional mean ergodic semigroups of random linear operators, J. Inequal. Appl. 150 (2012), 1-10.

21.
X. Zhang and T. X. Guo, Von Neumann's mean ergodic theorem on complete random inner product modules, Front. Math. China 6 (2011), no. 5, 965-985. crossref(new window)

22.
S. E. Zhao and T. X. Guo, The random subreflexivity of complete random normed modules, Internat. J. Math. 23 (2012), no. 3, 1-14.

23.
S. E. Zhao and G. Shi, A geometric form of the Hahn-Banach extension theorem for $L^0$ linear functions and the Goldstine-Weston theorem in random normed modules (in Chinese), Sci. Sin. Math. 41 (2011), no. 9, 827-836. crossref(new window)