JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES
Nikseresht, Ashkan; Azizi, Abdulrasool;
  PDF(new window)
 Abstract
We will introduce and study the notion of prime bases for weakly prime submodules and utilize them to derive some formulas on the weak radical of submodules of a module. In particular, we will show that every one dimensional integral domain weakly satisfies the radical formula and state some necessary conditions on local integral domains which are semi-compatible or satisfy the radical formula and also on Noetherian rings which weakly satisfy the radical formula.
 Keywords
prime basis of a submodule;weakly prime submodule;prime submodule;radical formula;
 Language
English
 Cited by
 References
1.
A. Azizi, On prime and weakly prime submodules, Vietnam J. Math. 36 (2008), no. 3, 315-325.

2.
A. Azizi, Radical formula and prime submodules, J. Algebra 307 (2007), no. 1, 454-460. crossref(new window)

3.
A. Azizi, Radical formula and weakly prime submodules, Glasg. Math. J. 51 (2009), no. 2, 405-412. crossref(new window)

4.
A. Azizi and A. Nikseresht, Simplified radical formula in modules, Houston J. Math. 38 (2012), no. 2, 333-344.

5.
M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2006), no. 3, 243-254. crossref(new window)

6.
M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.

7.
K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), no. 3, 285-293. crossref(new window)

8.
S. H. Man, On commutative Noetherian rings which satisfy the generalized radical for- mula, Comm. Algebra 27 (1999), no. 8, 4075-4088. crossref(new window)

9.
R. McCasland and M. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), no. 1, 37-39. crossref(new window)

10.
A. Nikseresht and A. Azizi, On arithmetical rings and the radical formula, Vietnam J. Math. 38 (2010), no. 1, 55-62.

11.
H. Sharif, Y. Sharifi, and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996), no. 1-2, 103-108. crossref(new window)

12.
P. F. Smith, Primary modules over commutative rings, Glasg. Math. J. 43 (2001), no. 1, 103-111.