JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUASI m-CAYLEY STRONGLY REGULAR GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUASI m-CAYLEY STRONGLY REGULAR GRAPHS
Kutnar, Klavdija; Malnic, Aleksander; Martinez, Luis; Marusic, Dragan;
  PDF(new window)
 Abstract
We introduce a new class of graphs, called quasi -Cayley graphs, having good symmetry properties, in the sense that they admit a group of automorphisms G that fixes a vertex of the graph and acts semiregularly on the other vertices. We determine when these graphs are strongly regular, and this leads us to define a new algebro-combinatorial structure, called quasi-partial difference family, or QPDF for short. We give several infinite families and sporadic examples of QPDFs. We also study several properties of QPDFs and determine, under several conditions, the form of the parameters of QPDFs when the group G is cyclic.
 Keywords
quasi m-Cayley graphs;quasi-semiregular actions;groups of automorphisms;cyclotomy;
 Language
English
 Cited by
1.
Cayley properties of merged Johnson graphs, Journal of Algebraic Combinatorics, 2016, 44, 4, 1047  crossref(new windwow)
 References
1.
A. Araluze, I. Kovacs, K. Kutnar, L. Martinez, and D. Marusic, Partial sum quadruples and bi-Abelian digraphs, J. Combin. Theory Ser A 119 (2012), no. 8, 1811-1831. crossref(new window)

2.
A. Araluze, K. Kutnar, L. Martinez, and D. Marusic, Edge connectivity in difference graphs and some new constructions of partial sum families, European J. Combin. 32 (2011), no. 3, 352-360. crossref(new window)

3.
L. D. Baumert, W. H. Mills, and R. L. Ward, Uniform cyclotomy, J. Number Theory 14 (1982), no. 1, 67-82. crossref(new window)

4.
R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419. crossref(new window)

5.
A. Duval, A directed graph version of strongly regular graphs, J. Combin. Theory Ser. A 47 (1988), no. 1, 71-100. crossref(new window)

6.
K. Kutnar, D. Marusic, S. Miklavic, and P. Sparl, Strongly regular tri-Cayley graphs, European J. Combin. 30 (2009), no. 4, 822-832. crossref(new window)

7.
K. H. Leung and S. L. Ma, Partial difference triples, J. Algebraic Combin. 2 (1993), no. 4, 397-409. crossref(new window)

8.
S. L. Ma, A survey of partial difference sets, Des. Codes Cryptogr. 4 (1994), no. 3, 221-261. crossref(new window)

9.
A. Malnic, D. Marusic, and P. Sparl, On strongly regular bicirculants, European J. Combin. 28 (2007), no. 3, 891-900. crossref(new window)

10.
A. Malnic, D. Marusic, P. Sparl, and B. Frelih, Symmetry structure of bicirculants, Discrete Math. 307 (2007), no. 3-5, 409-414. crossref(new window)

11.
L. Martinez and A. Araluze, New tools for the construction of directed strongly regular graphs: Difference digraphs and partial sum families, J. Combin. Theory Ser. B 100 (2010), no. 6, 720-728. crossref(new window)

12.
D. Marusic, Strongly regular bicirculants and tricirculants, Ars Combin. 25 C (1988), 11-15.

13.
M. J. de Resmini and D. Jungnickel, Strongly regular semi-Cayley graphs, J. Algebraic Combin. 1 (1992), no. 2, 171-195. crossref(new window)

14.
http://www.win.tue.nl/aeb/graphs/srg/srgtab1-50.html.