JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GEOMETRIC AND ANALYTIC INTERPRETATION OF ORTHOSCHEME AND LAMBERT CUBE IN EXTENDED HYPERBOLIC SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GEOMETRIC AND ANALYTIC INTERPRETATION OF ORTHOSCHEME AND LAMBERT CUBE IN EXTENDED HYPERBOLIC SPACE
Cho, Yunhi; Kim, Hyuk;
  PDF(new window)
 Abstract
We give a geometric proof of the analyticity of the volume of a tetrahedron in extended hyperbolic space, when vertices of the tetrahedron move continuously from inside to outside of a hyperbolic space keeping every face of the tetrahedron intersecting the hyperbolic space. Then we find a geometric and analytic interpretation of a truncated orthoscheme and Lambert cube in the hyperbolic space from the viewpoint of a tetrahedron in the extended hyperbolic space.
 Keywords
hyperbolic space;volume;analytic continuation;
 Language
English
 Cited by
1.
Combinatorial Decompositions, Kirillov–Reshetikhin Invariants, and the Volume Conjecture for Hyperbolic Polyhedra, Experimental Mathematics, 2016, 1  crossref(new windwow)
 References
1.
D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov, Geometry of Space of Constant Curvature, Geometry, II, 1-138, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993.

2.
B. B¨ohm and H. C. Im Hof, Flacheninhalt Verallgemeinerter Hyperbolischer Dreiecke, Geom. Dedicata 42 (1992), no. 2 223-233.

3.
Y. Cho, Trigonometry in extended hyperbolic space and extended de Sitter space, Bull. Korean Math. Soc. 46 (2009), no. 6, 1099-1133. crossref(new window)

4.
Y. Cho and H. Kim, On the volume formula for hyperbolic tetrahedra, Discrete Comput. Geom. 22 (1999), no. 3, 347-366. crossref(new window)

5.
Y. Cho and H. Kim, Volume of $C^{1,{\alpha}}$-boundary domain in extended hyperbolic space, J. KoreanMath. Soc. 43 (2006), no. 6, 1143-1158. crossref(new window)

6.
Y. Cho and H. Kim, The analytic continuation of hyperbolic space, Geom. Dedicata 161 (2012), 129-155. crossref(new window)

7.
P. Doyle and G. Leibon, 23040 symmetries of hyperbolic tetrahedra, arXiv:math. GT/0309187.

8.
R. Kellerhals, On the volume of hyperbolic polyhedra, Math. Ann. 285 (1989), 541-569. crossref(new window)

9.
A. Kolpakov and J. Murakami, Volume of a doubly truncated hyperbolic tetrahedron, arXiv:math.MG/1203.1061v4.

10.
J. Milnor, Hyperbolic geometry: the first 150 years, Bull. Am. Math. Soc. (N.S.) 6 (1982), no. 1, 9-24. crossref(new window)

11.
J. Murakami and M. Yano, On the volume of a hyperbolic and spherical tetrahedron, Comm. Anal. Geom. 13 (2005), no. 2, 379-400. crossref(new window)

12.
J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149. Springer-Verlag, New York, 1994.

13.
A. Ushijima, A volume formula for generalised hyperbolic tetrahedra, Non-Euclidean geometries, 249-265, Math. Appl. (N. Y.), 581, Springer, New York, 2006. crossref(new window)

14.
E. B. Vinberg, Volumes of non-Euclidean Polyhedra, Russian Math. Surveys 48 (1993), no. 2, 15-45. crossref(new window)