JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER`S LOWER NILRADICAL OF MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER`S LOWER NILRADICAL OF MODULES
Beachy, John A.; Behboodi, Mahmood; Yazdi, Faezeh;
  PDF(new window)
 Abstract
Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M
 Keywords
prime submodules;prime M-ideal;M-prime submodule;M-prime radical;M-injective module;
 Language
English
 Cited by
 References
1.
J. A. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (2002), no. 10, 4649-4676. crossref(new window)

2.
M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar. 122 (2009), no. 3, 293-306. crossref(new window)

3.
M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra 305 (2006), no. 2, 1128-1148. crossref(new window)

4.
M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl. 6 (2007), no. 2, 337-353. crossref(new window)

5.
M. Behboodi and H. Koohy, Wealy prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.

6.
J. C. Perez and J. R. Montes, Prime submodules and local Gabriel correspondence in ${\sigma}$[M], Comm. Algebra 40 (2012), no. 1, 213-232. crossref(new window)

7.
J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.

8.
P. Gabriel, Des categories Abeliennes, Bull. Soc. Math. France 90 (1964), 323-448.

9.
K. R. Goodearl and R. B. Warfield, An Introduction to Non-Commutative Noetherian Rings, London Math. Soc. Student Texts 16, Camberidge University Press, Cambrige, 1989.

10.
J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), no. 12, 3593-3602. crossref(new window)

11.
H. I. Karakas, On Noetherian module, METU J. Pure Appl. Sci. 5 (1972), no. 2, 165-168.

12.
K. Koh, On prime one-sided ideals, Canad. Math. Bull. 14 (1971), 259-260. crossref(new window)

13.
G. Krause, On fully left bounded left Noetherian ring, J. Algebra 23 (1972), 88-99. crossref(new window)

14.
T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag New York, Inc 1991.

15.
C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.

16.
S. H. Man, On commutative Noetherian rings which have the s.p.a.r. property, Arch. Math. (Basel) 70 (1998), no. 1, 31-40. crossref(new window)

17.
R. L. McCasland, M. E. Moore, On radicals of submodules, Comm. Algebra 19 (1991), 1327-1341. crossref(new window)

18.
R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), no. 3, 1041-1062. crossref(new window)

19.
G. Michler, Prime right ideals and right Noetherian rings, Proc. Symposium on Theory of Rings, 1971, in Ring theory (R. Gordon, ed.), 251-255, Academic Press, New York, 1972.

20.
P. F. Smith, The injective test lemma in fully bounded rings, Comm. Algebra 9 (1981), no. 17, 1701-1708. crossref(new window)

21.
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Reading 1991.