JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS
Shin, Byeong-Chun;
  PDF(new window)
 Abstract
This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.
 Keywords
Pseudo-spectral method;least-squares method;interface problem;
 Language
English
 Cited by
 References
1.
A. K. Aziz, R. B. Kellogg, and A. B. Stephens, Least squares methods for elliptic systems, Math. Comp. 44 (1985), no. 169, 53-70. crossref(new window)

2.
C. Bernardi and Y. Maday, Approximations spectrales de problemes aux limites ellip-tiques, vol. 10 of Mathematiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1992.

3.
M. Berndt, T. A. Manteuffel, and S. F. McCormick, Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients. II, SIAM J. Numer. Anal. 43 (2005), no. 1, 409-436 (electronic). crossref(new window)

4.
M. Berndt, T. A. Manteuffel, S. F. McCormick, and G. Starke, Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients. I, SIAM J. Numer. Anal. 43 (2005), no. 1, 386-408. crossref(new window)

5.
P. B. Bochev and M. D. Gunzburger, Analysis of least squares finite element methods for the Stokes equations, Math. Comp. 63 (1994), no. 208, 479-506. crossref(new window)

6.
P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev. 40 (1998), no. 4, 789-837. crossref(new window)

7.
P. Boomkamp, B. Boersma, R. Miesen, and G. Beijnon, A chebyshev collocation method for solving two-phase flow stability problems, J. Comput. Phys. 132 (1997), 191-200. crossref(new window)

8.
J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp. 66 (1997), no. 219, 935-955. crossref(new window)

9.
Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations. I, SIAM J. Numer. Anal. 31 (1994), no. 6, 1785-1799. crossref(new window)

10.
Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations. II, SIAM J. Numer. Anal. 34 (1997), no. 2, 425-454. crossref(new window)

11.
Z. Cai and B. C. Shin, The discrete first-order system least squares: the second-order elliptic boundary value problem, SIAM J. Numer. Anal. 40 (2002), no. 1, 307-318 (electronic). crossref(new window)

12.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988.

13.
Y. Cao and M. D. Gunzburger, Least-squares finite element approximations to solutions of interface problems, SIAM J. Numer. Anal. 35 (1998), no. 1, 393-405 (electronic). crossref(new window)

14.
G. J. Fix, M. D. Gunzburger, and R. A. Nicolaides, On finite element methods of the least squares type, Comput. Math. Appl. 5 (1979), no. 2, 87-98. crossref(new window)

15.
G. J. Fix and E. Stephan, On the finite element-least squares approximation to higher order elliptic systems, Arch. Rational Mech. Anal. 91 (1985), no. 2, 137-151.

16.
D. Funaro, A variational formulation for the Chebyshev pseudospectral approximation of Neumann problems, SIAM J. Numer. Anal. 27 (1990), no. 3, 695-703. crossref(new window)

17.
D. Jesperson, A least squares decomposition method for solving elliptic equations, Math. Comp. 31 (1977), no. 140, 873-880. crossref(new window)

18.
B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.

19.
J.-H. Jung, A note on the spectral collocation approximation of some differential equa- tions with singular source terms, J. Sci. Comput. 39 (2009), no. 1, 49-66. crossref(new window)

20.
S. D. Kim, H.-C. Lee, and B. C. Shin, Pseudospectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal. 41 (2003), no. 4, 1370-1387 (electronic). crossref(new window)

21.
S. D. Kim, H.-C. Lee, and B. C. Shin, Least-squares spectral collocation method for the Stokes equations, Numer. Methods Partial Differential Equations 20 (2004), no. 1, 128-139. crossref(new window)

22.
S. D. Kim and B. C. Shin, Chebyshev weighted norm least-squares spectral methods for the elliptic problem, J. Comput. Math. 24 (2006), no. 4, 451-462.

23.
A. Loubenets, T. Ali, and M. Hanke, Highly accurate finite element method for one- dimensional elliptic interface problems, Appl. Numer. Math. 59 (2009), no. 1, 119-134. crossref(new window)

24.
A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal. 31 (1994), no. 5, 1368-1377. crossref(new window)

25.
M. M. J. Proot and M. I. Gerritsma, A least-squares spectral element formulation for the Stokes problem, J. Sci. Comput. 17 (2002), no. 1-4, 285-296. crossref(new window)

26.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1994.

27.
Z. G. Seftel, A general theory of boundary value problems for elliptic systems with discontinuous coefficients, Ukrain. Mat. Z. 18 (1966), no. 3, 132-136. crossref(new window)

28.
B.-C. Shin and J.-H. Jung, Spectral collocation and radial basis function methods for one-dimensional interface problems, Appl. Numer. Math. 61 (2011), no. 8, 911-928. crossref(new window)

29.
A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys. 200 (2004), no. 2, 462-488. crossref(new window)