JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE
Guo, Shunzi; Li, Guanghan; Wu, Chuanxi;
  PDF(new window)
 Abstract
This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.
 Keywords
-curvature flow;horosphere;convex hypersurface;hyperbolic space;
 Language
English
 Cited by
1.
DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES, Journal of the Korean Mathematical Society, 2016, 53, 4, 737  crossref(new windwow)
 References
1.
B. H. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151-171. crossref(new window)

2.
B. H. Andrews, Contraction of convex hypersurfacs in Riemannian spaces, J. Differential Geom. 39 (1994), no. 2, 407-431.

3.
B. H. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151-161. crossref(new window)

4.
B. H. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000), no. 1, 1-36. crossref(new window)

5.
B. H. Andrews, Moving surfaces by non-concave curvature functions, preprint (2004), available at arXiv:math.DG/0402273.

6.
A. Borisenko and V. Miquel, Total curvatures of convex hypersurfaces in hyperbolic space, Illinois J. Math. 43 (1999), no. 1, 61-78.

7.
E. Cabezas-Rivas and V. Miquel, Volume preserving mean curvature flow in the hyperbolic space, Indiana Univ. Math. J. 56 (2007), no. 5, 2061-2086. crossref(new window)

8.
B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1985), no. 1, 117-138.

9.
B. Chow, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), no. 1, 63-82. crossref(new window)

10.
R. J. Currier, On hypersurfaces of hyperbolic space infinitesimally supported by horospheres, Trans. Amer. Math. Soc. 313 (1989), no. 1, 419-431. crossref(new window)

11.
R. E. Greene and H. Wu, Function Theory on Manifolds which possess a Pole, Springer Verlag, LNM 699, Berlin-Heidelberg-New York, 1979.

12.
R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.

13.
M. Heidusch, Zur Regularitat des Inversen Mittleren Krummungsfusses, PhD thesis, Eberhard-Karls-Universitat Tubingen, 2001.

14.
G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237-266.

15.
G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math. 84 (1986), no. 3, 463-480. crossref(new window)

16.
G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45-70. crossref(new window)

17.
G. Huisken and A. Polden, Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems (Cetraro, 1996), 45-84, Lecture Notes in Math., 1713, Springer, Berlin, 1999.

18.
N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, 1978.

19.
G. Li, L. Yu, and C. Wu, Curvature flow with a general forcing term in Euclidean spaces, J. Math. Anal. Appl. 353 (2009), no. 2, 508-520. crossref(new window)

20.
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.

21.
J. A. McCoy, Mixed volume preserving curvature flows, Calc. Var. Partial Differential Equations. 24 (2005), no. 2, 131-154. crossref(new window)

22.
P. Petersen, Riemannian Geometry. Springer Verlag, New York, 1998.

23.
O. C. Schnurer, Surfaces contracting with speed $|A|^2$, J. Differential Geom. 71 (2005), no. 3, 347-363.

24.
F. Schulze, Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z. 251 (2005), no. 4, 721-733. crossref(new window)

25.
J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. crossref(new window)

26.
K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867-882. crossref(new window)