JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES
Tong, Ce-Zhong; Zhou, Ze-Hua;
  PDF(new window)
 Abstract
We study the compact intertwining relations for composition operators, whose intertwining operators are Volterra type operators from the weighted Bergman spaces to the weighted Bloch spaces in the unit disk. As consequences, we find a new connection between the weighted Bergman spaces and little weighted Bloch spaces through this relations.
 Keywords
composition operator;integral-type operator;Bloch space;Bergman space;intertwining relation;essential commutativity;universal set;
 Language
English
 Cited by
 References
1.
A. Aleman and J. A. Cima, An integral operator on Hp and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176. crossref(new window)

2.
A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.

3.
P. S. Bourdon and J. H. Shapiro, Intertwining relations and extended eigenvalues for analytic Toeplitz operators, Illinois J. Math. 52 (2008), no. 3, 1007-1030.

4.
C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.

5.
V. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Prilozen 7 (1973), no. 3, 55-56.

6.
S. X. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc. 45 (2008), no. 1, 229-248. crossref(new window)

7.
J. H. Shapiro, Composition Operators and Classical Function Theory, Springer Verlag, New York, 1993.

8.
A. G. Siskakis and R. H. Zhao, A Volterra type operator on spaces of analytic functions, Function spaces (Edwardsville, IL, 1998). Contemp. Math., Vol. 232, pp. 299-311, 1999. crossref(new window)

9.
C. Tong and Z. Zhou, Intertwining relations for Volterra operators on the Bergman space, Illinois J. Math., to appear.

10.
J. Xiao, The $Q_p$ carelson measure problem, Adv. Math. 217 (2008), no. 5, 2075-2088. crossref(new window)

11.
K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143-1177. crossref(new window)

12.
K. H. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math, Springer, 2005.