JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE SEMIRINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE IDENTITY-SUMMAND GRAPH OF COMMUTATIVE SEMIRINGS
Atani, Shahabaddin Ebrahimi; Hesari, Saboura Dolati Pish; Khoramdel, Mehdi;
  PDF(new window)
 Abstract
An element r of a commutative semiring R with identity is said to be identity-summand if there exists such that r+a
 Keywords
I-semiring;co-ideal;Q-strong co-ideal;co-semidomain;identity-summand graph;identity-summand element;
 Language
English
 Cited by
1.
TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO IDENTITY-SUMMAND ELEMENTS,;;;

대한수학회지, 2014. vol.51. 3, pp.593-607 crossref(new window)
2.
TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL,;;;

대한수학회지, 2015. vol.52. 1, pp.159-176 crossref(new window)
1.
TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO IDENTITY-SUMMAND ELEMENTS, Journal of the Korean Mathematical Society, 2014, 51, 3, 593  crossref(new windwow)
2.
TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL, Journal of the Korean Mathematical Society, 2015, 52, 1, 159  crossref(new windwow)
 References
1.
A. Abbasi and S. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012), no. 1, 85-98. crossref(new window)

2.
S. Akbari, D. Kiani, F. Mohammadi, and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009), no. 12, 2224-2228. crossref(new window)

3.
S. Akbari, H. R. Maimani, and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003), no. 1, 169-180. crossref(new window)

4.
D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719. crossref(new window)

5.
D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719. crossref(new window)

6.
D. F. Anderson and A. Badawi, The total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (2012), no. 4, 1250074, 18 pp. crossref(new window)

7.
D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (2013), no. 5, 1250212, 18 pp. crossref(new window)

8.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), no. 2, 434-447. crossref(new window)

9.
D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550. crossref(new window)

10.
Z. Barati, K. Khashyarmanesh, F. Mohammadi, and K. Nafar, On the associated graphs to a commutative ring, J. Algebra Appl. 11 (2012), no. 2, 1250037, 17 pp. crossref(new window)

11.
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), no. 1, 208-226. crossref(new window)

12.
A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.

13.
T. Chelvam and T. Asir, On the total graph and its complement of a commutative ring, Comm. Algebra, 41 (2013), no. 10, 3820-3835. crossref(new window)

14.
T. Chelvam and T. Asir, The intersection graph of gamma sets in the total graph I, J. Algebra Appl. 12 (2013), no. 4, 1250198, 18pp. crossref(new window)

15.
T. Chelvam and T. Asir, The intersection graph of gamma sets in the total graph II, J. Algebra Appl. 12 (2013), no. 4, 1250199, 14 pp. crossref(new window)

16.
S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glas. Mat. Ser. III 44(64) (2009), no. 1, 141-153. crossref(new window)

17.
S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel, Strong co-ideal theory in quotients of semirings, J. of Advanced Research in Pure Math. 5 (2013), no. 3, 19-32. crossref(new window)

18.
S. Ebrahimi Atani and A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc. 46 (2009), no. 2, 313-325. crossref(new window)

19.
J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers Dordrecht, 1999.

20.
H. R. Maimani, M. R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (2006), no. 3, 923-929. crossref(new window)

21.
S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. crossref(new window)

22.
H. Wang, On rational series and rational language, Theoret. Comput. Sci. 205 (1998), no. 1-2, 329-336. crossref(new window)