A PRIORI L^{2} ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS

- Journal title : Journal of the Korean Mathematical Society
- Volume 51, Issue 1, 2014, pp.67-86
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2014.51.1.067

Title & Authors

A PRIORI L^{2} ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS

Ohm, Mi Ray; Lee, Hyun Young; Shin, Jun Yong;

Ohm, Mi Ray; Lee, Hyun Young; Shin, Jun Yong;

Abstract

Based on an expanded mixed finite element method, we consider the semidiscrete approximations of the solution u of the quasilinear pseudo-parabolic equation defined on , . We construct the semidiscrete approximations of and as well as u and prove the existence of the semidiscrete approximations. And also we prove the optimal convergence of and as well as u in normed space.

Keywords

pseudo-parabolic equation;an expanded mixed finite element method;semidiscrete approximations; optimal convergence;

Language

English

References

1.

D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981), no. 153, 53-63.

2.

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 724-760.

3.

G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1303.

4.

F. Brezzi, J. Jr. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217-235.

5.

Y. Cao, J. Yin, and C.Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations 246 (2009), no. 12, 4568-4590.

6.

R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Mathematics in Sciences and Engineering, Vol. 127, Academic Press, New York, 1976.

7.

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. 19 (1968), no. 4, 614-627.

8.

Y. Chen and L. Li, $L^p$ error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comp. 209 (2009), no. 2, 197-205.

9.

P. L. Davis, A quasilinear parabolic and related third order problem, J. Math. Anal. Appl. 49 (1972), 327-335.

10.

J. Jr. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52.

11.

R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), no. 6, 1125-1150.

12.

F. Gao and H. Rui, A split least-squares characteristic mixed finite element method for sobolev equations with convection term, Math. Comput. Simulation 80 (2009), no. 2, 341-351.

13.

F. Gao, J. Qiu, and Q. Zhang, Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation, J. Sci. Comput. 41 (2009), no. 3, 436-460.

14.

H. Guo, A remark on split least-squares mixed element procedures for pseudo-parabolic equations, Appl. Math. Comput. 217 (2011), no. 9, 4682-4690.

15.

D. Kim and E.-J. Park, A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 330-349.

16.

Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Math. 40 (1990), no. 1, 54-66.

17.

Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Math. Anal. Appl. 165 (1992), no. 1, 180-191.

18.

M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985), no. 1, 139-157.

19.

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292-315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.

20.

D. Shi and H. Wang, Nonconforming $H^1$ -Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), no. 2, 335-344.

21.

D. Shi and Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for sobolev equation, Appl. Math. Comput. 218 (2011), no. 7, 3176-3186.

22.

T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), no. 1, 147-159.