JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A PRIORI L2 ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A PRIORI L2 ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS
Ohm, Mi Ray; Lee, Hyun Young; Shin, Jun Yong;
  PDF(new window)
 Abstract
Based on an expanded mixed finite element method, we consider the semidiscrete approximations of the solution u of the quasilinear pseudo-parabolic equation defined on , . We construct the semidiscrete approximations of and as well as u and prove the existence of the semidiscrete approximations. And also we prove the optimal convergence of and as well as u in normed space.
 Keywords
pseudo-parabolic equation;an expanded mixed finite element method;semidiscrete approximations; optimal convergence;
 Language
English
 Cited by
 References
1.
D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981), no. 153, 53-63. crossref(new window)

2.
D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 724-760.

3.
G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), 1286-1303. crossref(new window)

4.
F. Brezzi, J. Jr. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217-235. crossref(new window)

5.
Y. Cao, J. Yin, and C.Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations 246 (2009), no. 12, 4568-4590. crossref(new window)

6.
R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Mathematics in Sciences and Engineering, Vol. 127, Academic Press, New York, 1976.

7.
P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. 19 (1968), no. 4, 614-627. crossref(new window)

8.
Y. Chen and L. Li, $L^p$ error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comp. 209 (2009), no. 2, 197-205. crossref(new window)

9.
P. L. Davis, A quasilinear parabolic and related third order problem, J. Math. Anal. Appl. 49 (1972), 327-335.

10.
J. Jr. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52. crossref(new window)

11.
R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), no. 6, 1125-1150. crossref(new window)

12.
F. Gao and H. Rui, A split least-squares characteristic mixed finite element method for sobolev equations with convection term, Math. Comput. Simulation 80 (2009), no. 2, 341-351. crossref(new window)

13.
F. Gao, J. Qiu, and Q. Zhang, Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation, J. Sci. Comput. 41 (2009), no. 3, 436-460. crossref(new window)

14.
H. Guo, A remark on split least-squares mixed element procedures for pseudo-parabolic equations, Appl. Math. Comput. 217 (2011), no. 9, 4682-4690. crossref(new window)

15.
D. Kim and E.-J. Park, A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 330-349. crossref(new window)

16.
Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Math. 40 (1990), no. 1, 54-66. crossref(new window)

17.
Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Math. Anal. Appl. 165 (1992), no. 1, 180-191. crossref(new window)

18.
M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension, Numer. Math. 47 (1985), no. 1, 139-157. crossref(new window)

19.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292-315. Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.

20.
D. Shi and H. Wang, Nonconforming $H^1$-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), no. 2, 335-344. crossref(new window)

21.
D. Shi and Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for sobolev equation, Appl. Math. Comput. 218 (2011), no. 7, 3176-3186. crossref(new window)

22.
T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), no. 1, 147-159. crossref(new window)

23.
T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 879-896. crossref(new window)

24.
T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 23-31. crossref(new window)