A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

- Journal title : Journal of the Korean Mathematical Society
- Volume 51, Issue 1, 2014, pp.87-98
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2014.51.1.087

Title & Authors

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

Safaeeyan, Saeed; Baziar, Mohammad; Momtahan, Ehsan;

Safaeeyan, Saeed; Baziar, Mohammad; Momtahan, Ehsan;

Abstract

Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say , such that when M = R, is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for in the present article. We show that is connected with . We also show that for a reduced module M with , if and only if is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, are adjacent if and only if . Among other things, it is also observed that if and only if M is uniform, ann(M) is a radical ideal, and , if and only if ann(M) is prime and .

Keywords

module;zero-divisor graph of modules;girth;diameter;complete bipartite graph;

Language

English

Cited by

1.

2.

References

1.

G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloquium, (to appear).

2.

S. Akbari and A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra 314 (2007), no. 1, 168-184.

3.

D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), 23-45, Springer-Verlag, New York, 2011.

4.

D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring, II, in: Lecture Notes in Pure and Appl. Math., vol. 220, pp. 61-72, Dekker, New York, 2001.

5.

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.

6.

D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550.

7.

F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.

8.

M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to their (first) dual, J. Algebra Appl. 12 (2013), no. 2, 1250151, 11 pp.

9.

M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to elements of their (first) dual, submitted to Bull. of IMS.

11.

M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4 (2012), no. 2, 175-197.

12.

M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.

13.

M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 740-753.

16.

F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Internat. J. Commutative Rings 1 (2002), no. 3, 93-106.

18.

S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002), no. 4, 203-211.

19.

D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

20.

R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading 1991.