$\ddot{o}$lder continuity;Lipschitz continuity;semilocal convergence;Newton-Kantorovich hypothesis;differential equation;"/> ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS | Korea Science
JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS
Argyros, Ioannis Konstantinos; Cho, Yeol Je; George, Santhosh;
  PDF(new window)
 Abstract
In this paper, we use Newton`s method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton`s method than before [1]-[13], in some interesting cases, provided that the Frchet-derivative of the operator involved is p-Hlder continuous (p(0, 1]). Numerical examples involving two boundary value problems are also provided.
 Keywords
Newton`s method;Banach space;recurrent functions;Hlder continuity;Lipschitz continuity;semilocal convergence;Newton-Kantorovich hypothesis;differential equation;
 Language
English
 Cited by
1.
On iterative computation of fixed points and optimization, Fixed Point Theory and Applications, 2015, 2015, 1  crossref(new windwow)
2.
LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS, Journal of the Korean Mathematical Society, 2016, 53, 4, 781  crossref(new windwow)
 References
1.
J. Appell, E. De Pascale, J. V. Lysenko, and P. P. Zabrejko, New results on Newton-Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997), no. 1-2, 1-17.

2.
I. K. Argyros, The theory and application of abstract polynomial equations, St. Lucie/CRC/Lewis Publ. Mathematics series, Boca Raton, Florida, 1998.

3.
I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. crossref(new window)

4.
I. K. Argyros, Concerning the "terra incognita" between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005), no. 1, 179-194. crossref(new window)

5.
I. K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer, New York, 2008.

6.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Taylor and Francis, New York, 2012.

7.
F. Cianciaruso, A further journey in the "terra incognita" of the Newton-Kantorovich method, Nonlinear Funct. Anal. Appl., to appear.

8.
F. Cianciaruso and E. De Pascale, Newton-Kantorovich approximations when the derivative is Holderian: old and new results, Numer. Funct. Anal. Optim. 24 (2003), no. 7-8, 713-723. crossref(new window)

9.
E. De Pascale and P. P. Zabrejko, Convergence of the Newton-Kantorovich method under Vertgeim conditions: a new improvement, Z. Anal. Anwendvugen 17 (1998), no. 2, 271-280. crossref(new window)

10.
L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.

11.
J. V. Lysenko, Conditions for the convergence of the Newton-Kantorovich method for nonlinear equations with Holder linearizations, Dokl. Akad. Nauk Belarusi 38 (1994), no. 3, 20-24, 122-123.

12.
B. A. Vertgeim, On conditions for the applicability of Newton's method, (Russian) Dokl. Akad. N., SSSR 110 (1956), 719-722.

13.
B. A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957), 166-169 (in Russian); English transl.: Amer. Math. Soc. Transl. 16 (1960), 378-382.