JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES
Itoh, Takashi; Nagisa, Masaru;
  PDF(new window)
 Abstract
We describe the Haagerup tensor product and the extended Haagerup tensor product in terms of Schur product maps, and show that (resp. ) coincides with (resp. ). For -algebras A, B, it is shown that $A{\otimes}_hB
 Keywords
operator space;Haagerup tensor product;extended Haagerup tensor product;Schur product;
 Language
English
 Cited by
 References
1.
D. P. Blecher and C. Le Merdy, Operator Algebras and Their Modules, London Math. Soc. Monogr. New Ser. 30, Oxford Univ. Press, Oxford, 2004.

2.
D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262-292. crossref(new window)

3.
D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. 45 (1992), no. 1, 126-144.

4.
E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), no. 2, 257-276. crossref(new window)

5.
E. G. Effros and Z.-J. Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), no. 3, 329-337. crossref(new window)

6.
E. G. Effros and Z.-J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), no. 2, 257-284. crossref(new window)

7.
E. G. Effros and Z.-J. Ruan, Operator spaces, J. London Math. Soc. Monogr. New Ser. 23, Oxford Univ. Press, New York, 2000.

8.
E. G. Effros and Z.-J. Ruan, Operator space tensor products and Hopf convolution algebras, J. Operator Theory 50 (2003), no. 1, 131-156.

9.
T. Itoh and M. Nagisa, Schur products and module maps on B(${\mathcal{H}}$), Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 253-268. crossref(new window)

10.
V. I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Stud. Adv. Math. 78, Cambridge Univ. Press, Cambridge, 2002.

11.
V. I. Paulsen and R. R. Smith, Diagonals in tensor products of operator algebras, Proc. Edinb. Math. Soc. 45 (2002), no. 3, 647-652.

12.
G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer Verlag, 2001.

13.
G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Notes Ser. 294, Cambridge Univ. Press, Cambridge, 2003.

14.
R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), no. 1, 156-175. crossref(new window)

15.
N. Spronk, Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proc. London Math. Soc. 89 (2004), no. 1, 161-192. crossref(new window)