JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRYSTAL B(λ) IN B(∞) FOR G2 TYPE LIE ALGEBRA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRYSTAL B(λ) IN B(∞) FOR G2 TYPE LIE ALGEBRA
Kim, Min Kyu; Lee, Hyeonmi;
  PDF(new window)
 Abstract
A previous work gave a combinatorial description of the crystal B(), in terms of certain simple Young tableaux referred to as the marginally large tableaux, for finite dimensional simple Lie algebras. Using this result, we present an explicit description of the crystal B(), in terms of the marginally large tableaux, for the Lie algebra type. We also provide a new description of B(), in terms of Nakajima monomials, that is in natural correspondence with our tableau description.
 Keywords
crystal base; type Lie algebra;marginally large tableau;Nakajima monomial;
 Language
English
 Cited by
1.
Crystal ℬ ( λ ) $\mathcal {B}(\lambda )$ as a Subset of the Tableau Description of ℬ ( ∞ ) $\mathcal {B}(\infty )$ for the Classical Lie Algebra Types, Algebras and Representation Theory, 2015, 18, 1, 137  crossref(new windwow)
 References
1.
V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), no. 1, 254-258.

2.
J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, vol. 42, Amer. Math. Soc., Providence, RI, 2002.

3.
J. Hong and H. Lee, Young tableaux and crystal B(${\infty}$) for finite simple Lie algebras, J. Algebra 320 (2008), no. 10, 3680-3693. crossref(new window)

4.
J. Hong and H. Lee, Young tableaux and crystal B(${\infty}$) for the exceptional Lie algebra types, J. Combin. Theory Ser. A 119 (2012), no. 2, 397-419. crossref(new window)

5.
K. Jeong, S.-J. Kang, J.-A. Kim, and D.-U. Shin, Crystals and Nakajima monomials for quantum generalized Kac-Moody algebras. J. Algebra 319 (2008), no. 9, 3732-3751. crossref(new window)

6.
M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69. crossref(new window)

7.
S.-J. Kang and K. C. Misra, Crystal bases and tensor product decompositions of $U_q(G_2)$-modules, J. Algebra 163 (1994), no. 3, 675-691. crossref(new window)

8.
M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516. crossref(new window)

9.
M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839-858. crossref(new window)

10.
M. Kashiwara, Bases Cristallines des Groupes Quantiques, Cours Specialises, vol. 9, Soc. Math. France, 2002.

11.
M. Kashiwara, Realizations of crystals, Combinatorial and Geometric Representation Theory (Seoul, 2001), 133-139, Contemp. Math. 325, Amer. Math. Soc., Providence, RI, 2003.

12.
H. Lee, Descriptions of the crystal B(${\infty}$) for $G_2$, Combinatorial representation theory and related topics, 4354, RIMS Kokyuroku Bessatsu, B8, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008.

13.
H. Lee, Crystal B(${\lambda}$) as a subset of crystal B(${\infty}$) expressed as tableaux for $A_n$ type, J. Algebra 400 (2014), 142-160. crossref(new window)

14.
K.-H. Lee, P. Lombardo, and B. Salisbury, Combinatorics of the Casselman-Shalika formula in type A, to appear in Proc. Amer. Math. Soc. (arXiv:1111.1134)

15.
K.-H. Lee and B. Salisbury, A combinatorial description of the Gindikin-Karpelevich formula in type A, J. Combin. Theory Ser. A 119 (2012), no. 5, 1081-1094. crossref(new window)

16.
K.-H. Lee and B. Salisbury, Young tableaux, canonical bases and the Gindikin-Karpelevich formula, to appear in J. Korean Math. Soc.

17.
P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145-179. crossref(new window)

18.
H. Nakajima, t-analogs of q-characters of quantum affine algebras of type $A_n,D_n$, Combinatorial and Geometric Representation Theory (Seoul, 2001), 141-160, Contemp. Math. 325, Amer. Math. Soc., Providence, RI, 2003.

19.
T. Nakashima, Polyhedral realizations of crystal bases for integrable highest weight modules, J. Algebra 219 (1999), no. 2, 571-597. crossref(new window)

20.
T. Nakashima and A. Zelevinsky, Polyhedral realizations of crystal bases for quantized Kac-Moody algebras, Adv. Math. 131 (1997), no. 1, 253-278. crossref(new window)

21.
D.-U. Shin, Crystal bases and monomials for $U_q(G_2)$-modules, Comm. Algebra 34 (2006), no. 1, 129-142. crossref(new window)