JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A RECURRENCE RELATION FOR THE JONES POLYNOMIAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A RECURRENCE RELATION FOR THE JONES POLYNOMIAL
Berceanu, Barbu; Nizami, Abdul Rauf;
  PDF(new window)
 Abstract
Using a simple recurrence relation, we give a new method to compute the Jones polynomials of closed braids: we find a general expansion formula and a rational generating function for the Jones polynomials. The method is used to estimate the degree of the Jones polynomials for some families of braids and to obtain general qualitative results.
 Keywords
Jones polynomial;braids;recurrence relation;
 Language
English
 Cited by
 References
1.
E. Artin, Theory of braids, Ann. of Math.(2) 48 (1947), 101-126. crossref(new window)

2.
R. Ashraf and B. Berceanu, Recurrence relation for HOMFLY polynomial and rational specializations, arXiv:1003.1034v1[mathGT], 2010.

3.
R. Ashraf and B. Berceanu, Simple braids, arXiv:1003.6014v1[mathGT], 2010.

4.
S. Bigelow, Does the Jones polynomial detect the unknot?, arXiv:0012086vI, 2000.

5.
J. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud., No. 82. Princeton University Press, 1974.

6.
J. Birman, On the Jones polynomial of closed 3-braids, Invent. Math. 81 (1985), 287-294. crossref(new window)

7.
O. T. Dasbach and S. Hougardy, Does the Jones polynomial detect unknottedness?, Experiment. Math. 6 (1997), no. 1, 51-56. crossref(new window)

8.
S. Eliahou, L. Kauffman, and M. Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology 42 (2003), no. 1, 155-169. crossref(new window)

9.
F. A. Garside, The braid groups and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254. crossref(new window)

10.
V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103-111. crossref(new window)

11.
V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335-388. crossref(new window)

12.
V. F. R. Jones, The Jones Polynomial, Discrete Math. 294 (2005), 275-277. crossref(new window)

13.
L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407. crossref(new window)

14.
W. B. R. Lickorish, An Introduction to Knot Theory, Springer-Verlag New York, Inc., 1997.

15.
H. R. Morton and H. B. Short, Calculating the 2-variable polynomial for knots presented as closed braids, J. Algorithms 11 (1990), no. 1, 117-131. crossref(new window)

16.
K. Murasugi, Jones polynomial and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187-194. crossref(new window)

17.
A. R. Nizami, Fibonacci modules and multiple Fibonacci sequences, ARS Combinatoria CXIII (2014), 151-159.

18.
A. Ocneanu, A polynomial invariant for knots: A combinatorial and algebraic approach, Preprint MSRI, Berkeley, 1984.

19.
A. Stoimenow, Coefficients and non-triviality of the Jones polynomial, arXiv:0606255vI, 2006.

20.
M. Takahashi, Explicit formulas for jones polynomials of closed 3-braids, Comment. Math. Univ. St. Paul 38 (1989), no. 2, 129-167.

21.
M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297-309. crossref(new window)

22.
P. Traczyk, 3-braids with proportional Jones polynomials, Kobe J. Math. 15 (1998), no. 2, 187-190.

23.
Y. Yokota, Twisting formulae of the Jones polynomials, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 473-482. crossref(new window)