JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMICENTRAL IDEMPOTENTS IN A RING
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMICENTRAL IDEMPOTENTS IN A RING
Han, Juncheol; Lee, Yang; Park, Sangwon;
  PDF(new window)
 Abstract
Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R and (R) (resp. (R)) be the set of all left (resp. right) semicentral idempotents in R. In this paper, the following are investigated: (1) (resp. ) if and only if re
 Keywords
left (resp. right) semicentral idempotent;complete set of (centrally) primitive idempotents;
 Language
English
 Cited by
1.
A note on semicentral idempotents, Communications in Algebra, 2017, 45, 6, 2735  crossref(new windwow)
2.
Structure of Abelian rings, Frontiers of Mathematics in China, 2017, 12, 1, 117  crossref(new windwow)
 References
1.
G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, Triangular matrix repre-sentations, J. Algebra 230 (2000), no. 2, 558-595. crossref(new window)

2.
G. Calaugareanu, Rings with lattices of idempotents, Comm. Algebra 38 (2010), no. 3, 1050-1056. crossref(new window)

3.
H. K. Grover, D. Khurana, and S. Singh, Rings with multiplicative sets of primitive idempotents, Comm. Algebra 37 (2009), no. 8, 2583-2590. crossref(new window)

4.
J. Han and S. Park, Additive set of idempotents in rings, Comm. Algebra 40 (2012), no. 9, 3551-3557. crossref(new window)

5.
T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Inc., 1991.