JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS
Kwak, Tai Keun; Lee, Dong Su; Lee, Yang;
  PDF(new window)
 Abstract
Nielsen and Rege-Chhawchharia called a ring R right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, there exists a nonzero element r R with f(x)r = 0. Hong et al. called a ring R strongly right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of g(x). Subsequently, Kim et al. observed similar conditions on linear polynomials by finding nonzero r's in various kinds of one-sided ideals generated by coefficients. But almost all results obtained by Kim et al. are concerned with the case of products of linear polynomials. In this paper we examine the nonzero annihilators in the products of general polynomials.
 Keywords
right left-ideal-McCoy ring;right McCoy ring;polynomial ring;matrix ring;condition ();Dorroh extension;
 Language
English
 Cited by
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

2.
D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. crossref(new window)

3.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. crossref(new window)

4.
V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. crossref(new window)

5.
P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. crossref(new window)

6.
K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.

7.
C. Y. Hong, Y. C. Jeon, N. K. Kim, and Y. Lee, The McCoy condition on noncommu- tative rings, Comm. Algebra 39 (2011), no. 5, 1809-1825. crossref(new window)

8.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. crossref(new window)

9.
Y. C. Jeon, H. K. Kim, N. K. Kim, T. K. Kwak, Y. Lee, and D. E. Yeo, On a general-ization of the McCoy condition, J. Korean Math. Soc. 47 (2010), no. 6, 1269-1282. crossref(new window)

10.
L. G. Jones and L. Weiner, Advanced Problems and Solutions, Solutions 4419, Amer. Math. Monthly 59 (1952), no. 5, 336-337. crossref(new window)

11.
B. O. Kim, T. K. Kwak, and Y. Lee, On constant zero-divisors of linear polynomials, Comm. Algebra (to appear).

12.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. crossref(new window)

13.
N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. crossref(new window)

14.
N. K. Kim, Y. Lee, and Y. Seo, Structure of idempotents in rings, (submitted).

15.
T. K. Kwak and Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), no. 5, 745-762. crossref(new window)

16.
T. K. Kwak, Y. Lee, and S. J. Yun, The Armendariz property on ideals, J. Algebra 354 (2012), 121-135. crossref(new window)

17.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.

18.
J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. crossref(new window)

19.
T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299. crossref(new window)

20.
N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. crossref(new window)

21.
L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.

22.
P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.

23.
V. S. Ramamurthi, Weakly regular rings, Canad. Math. Bull. 16 (1973), 317-321. crossref(new window)

24.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

25.
L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.

26.
W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. crossref(new window)