JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
Nagpal, Sumit; Ravichandran, V.;
  PDF(new window)
 Abstract
Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk are widely studied. A new methodology is employed to construct subclasses of univalent harmonic mappings from a given subfamily of univalent analytic functions. The notions of harmonic Alexander operator and harmonic Libera operator are introduced and their properties are investigated.
 Keywords
univalent harmonic mappings;starlike;convex;close-to-convex;coefficient estimates;growth estimate;convolution;convex combination;integral operators;
 Language
English
 Cited by
1.
Convex Combinations of Planar Harmonic Mappings Realized Through Convolutions with Half-Strip Mappings, Bulletin of the Malaysian Mathematical Sciences Society, 2016  crossref(new windwow)
 References
1.
J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12-22. crossref(new window)

2.
R. M. Ali, V. Ravichandran, and N. K. Jain, Convolution of certain analytic functions, J. Anal. 18 (2010), 1-8.

3.
Y. Avci and E. Z lotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 44 (1990), 1-7.

4.
D. M. Campbell and V. Singh, Valence properties of the solution of a differential equa-tion, Pacific J. Math. 84 (1979), no. 1, 29-33. crossref(new window)

5.
P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62 (1976), no. 1, 37-43.

6.
M. Chuaqui, P. Duren, and B. Osgood, Curvature properties of planar harmonic map-pings, Comput. Methods Funct. Theory 4 (2004), no. 1, 127-142. crossref(new window)

7.
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. crossref(new window)

8.
M. Dorff, Convolutions of planar harmonic convex mappings, Complex Variables Theory Appl. 45 (2001), no. 3, 263-271. crossref(new window)

9.
M. Dorff, M. Nowak, and M.Wo loszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503. crossref(new window)

10.
P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge Univ. Press, Cambridge, 2004.

11.
C. Y. Gao, On the starlikeness of the Alexander integral operator, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 10, 330-333. crossref(new window)

12.
M. R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2002), no. 2, 81-92. crossref(new window)

13.
A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.

14.
A. W. Goodman, Univalent Functions. Vol. I and II, Mariner, Tampa, FL, 1983.

15.
R. Hernandez and M. J. Martin, Stable geometric properties of analytic and harmonic functions, Math. Proc. Cambridge Philos. Soc. 155 (2013), 343-359. crossref(new window)

16.
J. Krzyz, The radius of close-to-convexivity within the family of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 201-204.

17.
J. Krzyz and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 11 (1963), 447-448.

18.
R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.

19.
T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. crossref(new window)

20.
T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317.

21.
E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27 (1971), 97-100. crossref(new window)

22.
S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.

23.
P. T. Mocanu, Sufficient conditions of univalency for complex functions in the class $C^1$, Anal. Numer. Theor. Approx. 10 (1981), no. 1, 75-79.

24.
P. T. Mocanu, On starlikeness of Libera transform, Mathematica (Cluj) 28(51) (1986), no. 2, 153-155.

25.
P. T. Mocanu, Injectivity conditions in the complex plane, Complex Anal. Oper. Theory 5 (2011), no. 3, 759-766. crossref(new window)

26.
S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), no. 2, 204-216. crossref(new window)

27.
S. Nagpal and V. Ravichandran, Fully starlike and fully convex harmonic mappings of order, Ann. Polon. Math. 108 (2013), no. 1, 85-107. crossref(new window)

28.
S. Nagpal and V. Ravichandran, Univalence and convexity in one direction of the convolution of harmonic map- pings, Complex Var. Elliptic Equ. (2013), DOI:10.1080/17476933.2013.836188. crossref(new window)

29.
S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput. Methods Funct. Theory 12 (2012), no. 2, 669-685. crossref(new window)

30.
S. Ponnusamy, H. Yamamoto, and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. 58 (2013), no. 1, 23-34. crossref(new window)

31.
J. S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math. 1 (1970), no. 1, 30-36.

32.
S. Ruscheweyh, Convolutions in Geometric Function Theory, Seminaire de Mathematiques Superieures, 83, Presses Univ. Montreal, Montreal, QC, 1982.

33.
S. Ruscheweyh and L. C. Salinas, On the preservation of direction-convexity and the Goodman-Saff conjecture, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 63-73. crossref(new window)

34.
H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. crossref(new window)

35.
H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), no. 1, 283-289. crossref(new window)

36.
R. Singh and S. Singh, Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 35 (1981), 145-148 (1984).

37.
R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), no. 1, 145-152. crossref(new window)