GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A KELLER-SEGEL-FLUID MODEL WITH NONLINEAR DIFFUSION

- Journal title : Journal of the Korean Mathematical Society
- Volume 51, Issue 3, 2014, pp.635-654
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2014.51.3.635

Title & Authors

GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A KELLER-SEGEL-FLUID MODEL WITH NONLINEAR DIFFUSION

Chung, Yun-Sung; Kang, Kyungkeun; Kim, Jaewoo;

Chung, Yun-Sung; Kang, Kyungkeun; Kim, Jaewoo;

Abstract

We consider the Cauchy problem for a Keller-Segel-fluid model with degenerate diffusion for cell density, which is mathematically formulated as a porus medium type of Keller-Segel equations coupled to viscous incompressible fluid equations. We establish the global-in-time existence of weak solutions and bounded weak solutions depending on some conditions of parameters such as chemotactic sensitivity and consumption rate of oxygen for certain range of diffusive exponents of cell density in two and three dimensions.

Keywords

incompressible fluid;Keller-Segel model;nonlinear diffusion;

Language

English

Cited by

1.

2.

3.

4.

5.

References

1.

M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2271-2297.

2.

A. Chertock, K. Fellner, A. Kurganov, A. Lorz, and P. A. Markowich, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech. 694 (2012), 155-190.

3.

R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations 35 (2010), no. 9, 1635-1673.

4.

M. D. Francesco, A. Lorz, and P. Markowich, Chemotaxis-fluid coupled model for swim-ming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Dis-crete Contin. Dyn. Syst. 28 (2010), no. 4, 1437-1453.

5.

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic type, J. Differential Equations 252 (2012), no. 2, 1421-1440.

6.

E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), no. 3, 399-415.

8.

O. A. Ladyzhenskaya, Global solvability of a boundary value problem for the Navier-Stokes equations in the case of two spatial variables, Doklady of the USSR 123 (1958), 427-429.

9.

J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model, I. H. Poincare, Analyse Non Lineaire 28 (2011), no. 5, 643-652.

10.

11.

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311-338.

12.

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), no. 1, 333-364.

13.

Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. 32 (2012), no. 5, 1901-1914.

14.

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincare Anal. Non Lineaire. 30 (2013), no. 1, 157-178

15.

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS 102 (2005), no. 7, 2277-2282.

16.

D. Vorotnikov, Weak solutions for a bioconvection model related to bacillus subtilis, to appear in Comm. Math. Sci.