JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS
Zhang, Tie; Liu, Jingna;
  PDF(new window)
 Abstract
We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the -norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.
 Keywords
discontinuous Galerkin method;first-order hyperbolic system;semi-explicit scheme;stability and error estimate;
 Language
English
 Cited by
 References
1.
D. N. Arnold, F. Brezzi, and B. Cockburn, et al., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 5, 1749-1779.

2.
P. G. Cairlet, The Finite Element Methods for Elliptic Problems, North-Holland Publish, Amsterdam, 1978.

3.
B. Cockburn, G. E. Karniadakis, and C. W. Shu, Discontinuous Galerkin Methods, Theory, Computation and Applications, Lecture Notes Comput. Sci. Eng., Vol. 11, Springer-Verlag, Berlin, 2000.

4.
B. Cockburn, B. Dong, and J. Guzman, Optimal convergence of the original DG method for the transport-reaction equation on special meshes, SIAM J. Numer. Anal. 46 (2008), no. 3, 1250-1265. crossref(new window)

5.
B. Cockburn and C. W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems (review article), J. Sci. Compu. 16 (2001), no. 3, 173-261. crossref(new window)

6.
A. Ern and J. L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems, I. general theory, SIAM J. Numer. Anal. 44 (2006), no. 2, 753-778. crossref(new window)

7.
R. S. Falk and G. R. Richter, Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal. 36 (1999), no. 3, 935-952. crossref(new window)

8.
K. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. crossref(new window)

9.
C. Johnson, U. Navert, and J. Pitkaranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45 (1984), no. 1-3, 285-312. crossref(new window)

10.
P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Compu. 22 (2005), 443-477.

11.
T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 133-140. crossref(new window)

12.
G. Richter, An optimal-order error estimate for discontinuous Galerkin method, Math. Comp. 50 (1988), 75-88. crossref(new window)

13.
R. Winther, Astable finite element method for first-order hyperbolic systems, Math. Comp. 36 (1981), 65-86. crossref(new window)

14.
T. Zhang, Discontinuous Finite Element Theory and Method, Sincece Press, Beijing, 2012.