TRAVELING WAVE SOLUTIONS IN NONLOCAL DISPERSAL MODELS WITH NONLOCAL DELAYS

- Journal title : Journal of the Korean Mathematical Society
- Volume 51, Issue 4, 2014, pp.703-719
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2014.51.4.703

Title & Authors

TRAVELING WAVE SOLUTIONS IN NONLOCAL DISPERSAL MODELS WITH NONLOCAL DELAYS

Pan, Shuxia;

Pan, Shuxia;

Abstract

This paper is concerned with the traveling wave solutions of nonlocal dispersal models with nonlocal delays. The existence of traveling wave solutions is investigated by the upper and lower solutions, and the asymptotic behavior of traveling wave solutions is studied by the idea of contracting rectangles. To illustrate these results, a delayed competition model is considered by presenting the existence and nonexistence of traveling wave solutions, which completes and improves some known results. In particular, our conclusions can deal with the traveling wave solutions of evolutionary systems which admit large time delays reflecting intraspecific competition in population dynamics and leading to the failure of comparison principle in literature.

Keywords

upper-lower solutions;asymptotic spreading;contracting rectangle;large delay;

Language

English

References

1.

P. W. Bates, On some nonlocal evolution equations arising in materials science, In: Nonlinear dynamics and evolution equations (Ed. by H. Brunner, X. Zhao and X. Zou), pp. 13-52, Fields Inst. Commun. 48, AMS, Providence, 2006.

2.

P. W. Bates, P. C. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 (1997), no. 2, 105-136.

3.

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2433-2439.

4.

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations 2 (1997), no. 1, 125-160.

5.

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal. 60 (2005), no. 5, 797-819.

6.

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 4, 727-755.

7.

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, In: Nonlinear dynamics and evolution equations (Ed. by H. Brunner, X. Zhao and X. Zou), pp. 137-200, Fields Inst. Commun. 48, AMS, Providence, 2006.

8.

L. Hopf, Introduction to Differential Equations of Physics, Dover, New York, 1948.

9.

Y. Jin and X. Q. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity 22 (2009), no. 5, 1167-1189.

10.

W. T. Li, Y. Sun, and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl. 11 (2010), no. 4, 2302-2313.

11.

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math. 60 (2007), no. 1, 1-40.

12.

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays, J. Dynam. Diff. Eqns., in press, DOI: 10.1007/s10884-014-9355-4.

13.

J. D. Murray, Mathematical Biology, Springer, Berlin-Heidelberg-New York, 1993.

14.

S. Pan, Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity, J. Math. Anal. Appl. 346 (2008), no. 2, 415-424.

15.

S. Pan, W. T. Li, and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys. 60 (2009), no. 3, 377-392.

16.

S. Pan, W. T. Li, and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal. 72 (2010), no. 6, 3150-3158.

17.

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations 249 (2010), no. 4, 747-795.

18.

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997.

19.

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, RI, 1995.

20.

Y. Sun, W. T. Li, and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal. 74 (2011), no. 3, 814-826.

21.

S. Wu and S. Liu, Traveling waves for delayed non-local diffusion equations with crossing-monostability, Appl. Math. Comput. 217 (2010), no. 4, 1435-1444.

22.

J. Xia, Z. Yu, and R. Yuan, Traveling waves of a competitive Lotka-Volterra model with nonlocal diffusion and time delays, Acta Math. Appl. Sin. 34 (2011), no. 6, 1082-1093.

23.

Z. Xu and P. Weng, Traveling waves in a convolution model with infinite distributed delay and non-monotonicity, Nonlinear Anal. Real World Appl. 12 (2011), no. 1, 633-647.

24.

Z. Yu and R. Yuan, Travelling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J. 51 (2009), no. 1, 49-66.

25.

Z. Yu and R. Yuan, Travelling wave solutions in non-local convolution diffusive competitive-cooperative systems, IMA J. Appl. Math. 76 (2011), no. 4, 493-513.