JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS
Saraei, Fatemeh Esmaeili Khalil;
  PDF(new window)
 Abstract
Let M be a module over a commutative ring R, and let T(M) be its set of torsion elements. The total torsion element graph of M over R is the graph with vertices all elements of M, and two distinct vertices m and n are adjacent if and only if . In this paper, we study the basic properties and possible structures of two (induced) subgraphs and of , with vertices and , respectively. The main purpose of this paper is to extend the definitions and some results given in [6] to a more general total torsion element graph case.
 Keywords
total graph;torsion prime submodule;T-reduced;
 Language
English
 Cited by
 References
1.
A. Abbasi and Sh. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012), no. 1, 85-98. crossref(new window)

2.
A. Abbasi and Sh. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, J. Algebra Appl. 11 (2012), no. 3, 1250048, 13 pp.

3.
D. D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra. 42 (2014), 1835-1843. crossref(new window)

4.
D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra. 159 (1993), no. 2, 500-514. crossref(new window)

5.
D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), 23-45, Springer-Verlag, New York, 2011.

6.
D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (2012), no. 4, 1250074, 18 pp.

7.
D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (2013), no. 5, 1250212, 18 pp.

8.
D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra. 320 (2008), no. 7, 2706-2719. crossref(new window)

9.
D. F. Anderson and P. F. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (1999), no. 2, 437-447.

10.
D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra. 210 (2007), no. 2, 543-550. crossref(new window)

11.
Z. Barati, K. Khashyarmanesh, F. Mohammadi, and K. Nafar, On the associated graphs to a commutative ring, J. Algebra Appl. 11 (2012), no. 2, 1250037, 17 pp.

12.
I. Beck, Coloring of commutative rings, J. Algebra. 116 (1988), no. 1, 208-226. crossref(new window)

13.
S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total torsion element graph of semimodules over commutative semirings, Algebra and Discrete Mathematics 16 (2013), no. 1, 1-15.

14.
S. Ebrahimi Atani and S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constant. 19 (2011), no. 1, 23-34.

15.
R. L. MacCasland and P. F. Smith , Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), 1041-1062. crossref(new window)