JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LINEAR OPERATORS THAT PRESERVE SETS OF PRIMITIVE MATRICES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LINEAR OPERATORS THAT PRESERVE SETS OF PRIMITIVE MATRICES
Beasley, Leroy B.; Kang, Kyung-Tae; Song, Seok-Zun;
  PDF(new window)
 Abstract
We consider linear operators on square matrices over antinegative semirings. Let denote the set of all primitive matrices of exponent k. We characterize those linear operators which preserve the set and the set , and those that preserve the set and the set . We also characterize those linear operators that strongly preserve , or .
 Keywords
Linear operator;primitive matrix;line matrix;double star matrix;
 Language
English
 Cited by
 References
1.
L. B. Beasley and A. E. Guterman, Operators preserving primitivity for matrix pairs, Matrix methods: theory, algorithms and applications, World Sci. Publ., Hackensack, NJ, 2-19, 2010.

2.
L. B. Beasley and A. E. Guterman, The characterization of operators preserving primitivity for matrix k-tuples, Linear Algebra Appl. 430 (2009), no. 7, 1762-1777. crossref(new window)

3.
L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77. crossref(new window)

4.
L. B. Beasley and N. J. Pullman, Term-rank, permanent, and rook-polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46. crossref(new window)

5.
L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve primitivity, Linear and Multilinear Algebra 25 (1989), no. 3, 205-213. crossref(new window)

6.
L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve the index of imprimitivity, Linear and Multilinear Algebra 31 (1992), no. 1-4, 267-283. crossref(new window)

7.
R. Brualdi and H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York, 1991.

8.
A. L. Dulmadge and N. S. Mendelsohn, The exponents of incident matrices, Duke Math. J. 31 (1964), 575-584. crossref(new window)

9.
G. Frobenius, Uber die Darstellung der entlichen Gruppen durch Linear Substitutionen, S. B. Deutsch. Akad. Wiss. Berlin (1897), 994-1015.

10.
J. C. Holladay and R. S. Varga, On powers of non-negative matrices, Proc. Amer. Math. Soc. 9 (1985), 631-634.

11.
M. Lewin and Y. Vitek, A system of gaps in the exponent set of primitive matrices, Illinois J. Math. 25 (1981), no. 1, 87-98.

12.
C.-K. Li and S. J. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), no. 7, 591-605. crossref(new window)

13.
B. Liu, On the bounds of exponents of primitive (0, 1) matrices, Southeast Asia Bull. Math. 22 (1998), no. 1, 57-65.

14.
S. J. Pierce, et al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), no. 1-2, 1-129. crossref(new window)

15.
H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642-648. crossref(new window)