JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TRANSITIVITY, TWO-SIDED LIMIT SHADOWING PROPERTY AND DENSE ω-CHAOS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TRANSITIVITY, TWO-SIDED LIMIT SHADOWING PROPERTY AND DENSE ω-CHAOS
Oprocha, Piotr;
  PDF(new window)
 Abstract
We consider -chaos as defined by S. H. Li in 1993. We show that c-dense -scrambled sets are present in every transitive system with two-sided limit shadowing property (TSLmSP) and that every transitive map on topological graph has a dense Mycielski -scrambled set. As a preliminary step, we provide a characterization of dynamical properties of maps with TSLmSP.
 Keywords
shadowing property;limit shadowing;pseudo-orbit;asymptotic tracing;minimal set;-chaos;topological graph;
 Language
English
 Cited by
1.
The limit shadowing property and Li–Yorke’s chaos, Asian-European Journal of Mathematics, 2016, 09, 01, 1650007  crossref(new windwow)
2.
Limit Sets, Attractors and Chaos, Qualitative Theory of Dynamical Systems, 2015  crossref(new windwow)
 References
1.
Ll. Alseda, M. A. del Rio, and J. A. Rodriguez, A splitting theorem for transitive maps, J. Math. Anal. Appl. 232 (1999), no. 2, 359-375. crossref(new window)

2.
Ll. Alseda, M. A. del Rio, and J. A. Rodriguez, Transitivity and dense periodicity for graph maps, J. Difference Equ. Appl. 9 (2003), no. 6, 577-598. crossref(new window)

3.
J. Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 505-529. crossref(new window)

4.
J. Banks and B. Trotta, Weak mixing implies mixing for maps on topological graphs, J. Difference Equ. Appl. 11 (2005), no. 12, 1071-1080. crossref(new window)

5.
J. Bobok, On multidimensional ${\omega}$-chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 3, 737-740. crossref(new window)

6.
B. Carvalho, Hyperbolicity, transitivity and the two-sided limit shadowing property, Proc. AMS, to appear.

7.
B. Carvalho and D. Kwietniak, On homeomorphisms with the two-sided limit shadowing property, preprint, arXiv:1402.0674.

8.
M. Dirbak, L. Snoha, and V. Spitalsky, Minimality, transitivity, mixing and topological entropy on spaces with a free interval, Ergodic Theory Dynam. Systems 33 (2013), no. 6, 1786-1812. crossref(new window)

9.
G. Haranczyk, D. Kwietniak, and P. Oprocha, A note on transitivity, sensitivity and chaos for graph maps, J. Difference Equ. Appl. 17 (2011), no. 10, 1549-1553. crossref(new window)

10.
G. Haranczyk, D. Kwietniak, and P. Oprocha, Topological structure and entropy of mixing graph maps, Ergodic Theory Dynam. Systems (2013); doi: 10.1017/etds.2013.6 crossref(new window)

11.
M. Kulczycki, D. Kwietniak, and P. Oprocha, On almost specification and average shad-owing properties, preprint, 2013.

12.
D. Kwietniak and P. Oprocha, A note on the average shadowing property for expansive maps, Topology Appl. 159 (2012), no. 1, 19-27. crossref(new window)

13.
M. Lampart and P. Oprocha, Shift spaces, ${\omega}$-chaos and specification property, Topology Appl. 156 (2009), no. 18, 2979-2985. crossref(new window)

14.
K. Lee and K. Sakai, Various shadowing properties and their equivalence, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 533-540. crossref(new window)

15.
S. H. Li, ${\omega}$-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1, 243-249.

16.
J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps, Topology 32 (1993), no. 3, 649-664. crossref(new window)

17.
G. Lu, K. Lee, and M. Lee, Generic diffeomorphisms with weak limit shadowing, Adv. Difference Equ. 2013 (2013), article id: 27, doi: 10.1186/1687-1847-2013-27. crossref(new window)

18.
J. H. Mai and X. Ye, The structure of pointwise recurrent maps having the pseudo orbit tracing property, Nagoya Math. J. 166 (2002), 83-92.

19.
J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 137-147.

20.
T. K. S. Moothathu, Implications of pseudo-orbit tracing property for continuous maps on compacta, Top. Appl. 158 (2011), no. 16, 2232-2239. crossref(new window)

21.
T. K. S. Moothathu, Syndetically proximal pairs, J. Math. Anal. Appl. 379 (2011), no. 2, 656-663. crossref(new window)

22.
T. K. S. Moothathu and P. Oprocha, Shadowing entropy and minimal subsystems, Monatsh. Math. 172 (2013), no. 3-4, 357-378. crossref(new window)

23.
K. Palmer, Shadowing in Dynamical Systems, Kluwer Academic Publishers, Dordrecht, 2000.

24.
R. Pikula, On some notions of chaos in dimension zero, Colloq. Math. 107 (2007), no. 2, 167-177. crossref(new window)

25.
S. Yu. Pilyugin, Shadowing in Dynamical Systems, Springer-Verlag, Berlin, 1999.

26.
S. Yu. Pilyugin, Sets of dynamical systems with various limit shadowing properties, J. Dynam. Differential Equations 19 (2007), no. 3, 747-775. crossref(new window)

27.
K. Sakai, Diffeomorphisms with the s-limit shadowing property, Dyn. Syst. 27 (2012), no. 4, 403-410. crossref(new window)

28.
S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998.

29.
J. Smital and M. Stefankova, Omega-chaos almost everywhere, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1323-1327. crossref(new window)