JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME CLASSES OF REPEATED-ROOT CONSTACYCLIC CODES OVER 𝔽pm+u𝔽pm+u2𝔽pm
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME CLASSES OF REPEATED-ROOT CONSTACYCLIC CODES OVER 𝔽pm+u𝔽pm+u2𝔽pm
Liu, Xiusheng; Xu, Xiaofang;
  PDF(new window)
 Abstract
Constacyclic codes of length over $R
 Keywords
constacyclic codes;cyclic codes;Hamming distance;repeated-root codes;
 Language
English
 Cited by
 References
1.
T. Abulrub and R. Oehmke, On the generators of ${\mathbb{Z}}_4$ cyclic codes of length $2^e$, IEEE Trans. Inform. Theory 49 (2003), 2126-2133. crossref(new window)

2.
T. Blackford, Cyclic code over ${\mathbb{Z}}_4$ of oddly even length, Discrete Appl. Math. 138 (2003), no. 1, 27-40.

3.
T. Blackford, Negacyclic codes over ${\mathbb{Z}}_4$ of even length, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1417-1424. crossref(new window)

4.
H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory 51 (2005), no. 12, 4252-4262. crossref(new window)

5.
H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Field Appl. 14 (2008), no. 1, 22-40. crossref(new window)

6.
H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois exlension rings of ${\mathbb{F}}_2\;+\;u{\mathbb{F}}_2$, IEEE Trans. Inform. Theory 55 (2009), no. 4, 1730-1740. crossref(new window)

7.
H. Q. Dinh, Constacyclic codes of length $p^s$ over ${\mathbb{F}}_{p^m}\;+\;u{\mathbb{F}}_{p^m}$, J. Algebra 324 (2010), no. 5, 940-950. crossref(new window)

8.
H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), no. 8, 1728-1744. crossref(new window)

9.
S. T. Dougherty and S. Ling, Cyclic codes over ${\mathbb{Z}}_4$ of even length, Des. Codes Cryptogr. 39 (2006), no. 2, 127-153. crossref(new window)

10.
A. R. Hammous, Jr., P. V. Kumar, A. R. Calderbark, J. A. Sloame, and P. Sole, The ${\mathbb{Z}}_4$-linearity of Kordock, Preparata, Goethals, and releted codes, IEEE Trans. Inform. Theory 40 (1994), 301-319. crossref(new window)

11.
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.

12.
P. Kanwar and S. R. Lopez-Permouth, Cyclic codes over the integers modulo ${\mathbb{Z}}_{p^m}$, Finite Field Appl. 3 (1997), no. 4, 334-352. crossref(new window)

13.
S. Ling, H. Niederreiter, and P. Sole, On the algebraic structure of quasi-cyclic codes. IV, Repeated root, Des. Codes. Cryplogr. 38 (2006), no. 3, 337-361. crossref(new window)

14.
G. H. Norton and A. Salagean, On the struture of linear and cyclic codes over a finite chain ring, AAECC 10 (2000), no. 6, 489-506. crossref(new window)

15.
V. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, Amsterdam, 1998.

16.
A. Salagean, Repelated-root cyclic and negacyclic codes over finite chain rings, Discrete Appl. Math. 154 (2006), 413-419. crossref(new window)

17.
J. Wolfmann, Negacyclic and cyclic codes over ${\mathbb{Z}}_4$, IEEE Trans. Inform. Theory. 45 (1999), no. 7, 2527-2532. crossref(new window)

18.
S. Zhu and X. Kai, Dual and self-dual negacyclic codes of even length over ${\mathbb{Z}}_2a$, Discrete Math. 309 (2009), no. 8, 2382-2391. crossref(new window)

19.
S. Zhu and X. Kai, A class of constacyclic codes over ${\mathbb{Z}}_{p^m}$, Finite Field Appl. 16 (2010), no. 4, 243-254. crossref(new window)