JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PACKING DIMENSIONS OF GENERALIZED RANDOM MORAN SETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PACKING DIMENSIONS OF GENERALIZED RANDOM MORAN SETS
Tong, Xin; Yu, Yue-Li; Zhao, Xiao-Jun;
  PDF(new window)
 Abstract
We consider random fractal sets with random recursive constructions in which the contracting vectors have different distributions at different stages. We prove that the random fractal associated with such construction has a constant packing dimension almost surely and give an explicit formula to determine it.
 Keywords
generalized random Moran construction;packing dimension;negative moment;
 Language
English
 Cited by
 References
1.
M. Arbeiter, Random recursive construction of self-similar fractal measure. The non-compact case, Probab. Theory Related Fields 88 (1991), no. 4, 497-520. crossref(new window)

2.
M. Arbeiter and N. Patzschke, Random self-similar multifractals, Math. Nachr. 181 (1996), 5-42.

3.
K. J. Falconer, Random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559-582. crossref(new window)

4.
K. J. Falconer, Fractal Geometry. Mathematical Foundation and Applications, John Wily and Sons, Ltd., Chichester, 1990.

5.
K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Ltd. Chichester, 1997.

6.
S. Graf, Statistically self-similar fractals, Probab. Theory Related Fields 74 (1987), no. 3, 357-392. crossref(new window)

7.
S. Graf, R. D. Mauldin, and S. C. Williams, The exact Hausdorff dimension in random recursive constructions, Mem. Amer. Math. Soc. 71 (1988), no. 381, x+121 pp.

8.
S. Hua, The dimensions of generalized self-similar sets, Acta Math. Appl. Sin. 17 (1994), no. 4, 551-558.

9.
S. Hua and W. X. Li, Packing dimension of generalized Moran sets, Prog. Nat. Sci. 6 (1996), no. 2, 148-152.

10.
S. Hua, H. Rao, Z. Y. Wen, and J. Wu, On the structures and dimensions of Moran sets, Sci. China Ser. A 43 (2000), no. 8, 836-852. crossref(new window)

11.
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. crossref(new window)

12.
J. E. Hutschinson and L. Ruschendorff, Random fractal measures via the contraction method, Indiana Univ. Math. J. 47 (1998), no. 2, 471-487.

13.
Y. Kifer, Fractals via Random Iterated Function Systems and Random Geometric Constructions, Fractal Geometry and Stochastics (Finsterbergen, 1994), pp. 145-164; Progr. Probab. 37 Birkhauser, Basel, 1995.

14.
Y. Kifer, Fractal dimensions and random transformations, Trans. Amer. Math. Soc. 348 (1996), no. 5, 2003-2038. crossref(new window)

15.
Y. Y. Liu, Z. Y. Wen, and J. Wu, Generalized random recursive constructions and geometric properties of random fractals, Math. Nachr. 267 (2004), 65-76. crossref(new window)

16.
R. D. Mauldin and S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc. 295 (1986), no. 1, 325-346. crossref(new window)

17.
P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 12 (1946), 15-23.

18.
L. Olsen, Random geometrically graph directed self-similar multifractals, Pitman Research Notes in Mathematics Series, 307. Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994.

19.
N. Patzschke and M. Zahle, Self-similar random measures are locally scale invariant, Probab. Theory Related Fields 97 (1993), no. 4, 559-574. crossref(new window)

20.
N. Patzschke and U. Zahle, Self-similar random measures IV. The recursive construction model of Falconer, Graf, and Mauldin and Williams, Math. Nachr. 149 (1990), 285-302. crossref(new window)

21.
Y. Pesin, Dimension Theory in Dynamical Systems, University of Chicago Press, Chicago, IL, 1997.

22.
Y. Pesin and H. Weiss, On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture, Comm. Math. Phys. 182 (1996), no. 1, 105-153. crossref(new window)