JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON LEVI HARMONICITY OF CONTACT SEMI-RIEMANNIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REMARKS ON LEVI HARMONICITY OF CONTACT SEMI-RIEMANNIAN MANIFOLDS
Perrone, Domenico;
  PDF(new window)
 Abstract
In a recent paper [10] we introduced the notion of Levi harmonic map f from an almost contact semi-Riemannian manifold (M, , , , g) into a semi-Riemannian manifold . In particular, we compute the tension field for a CR map f between two almost contact semi-Riemannian manifolds satisfying the so-called -condition, where $H
 Keywords
almost contact semi-Riemannian manifold;-condition;CR map;invariant submanifold;Levi harmonicity;Levi pluriharmonicity;
 Language
English
 Cited by
1.
A REMARK ON QUASI CONTACT METRIC MANIFOLDS,;;;

대한수학회보, 2015. vol.52. 3, pp.1027-1034 crossref(new window)
1.
A REMARK ON QUASI CONTACT METRIC MANIFOLDS, Bulletin of the Korean Mathematical Society, 2015, 52, 3, 1027  crossref(new windwow)
 References
1.
P. Baird and J. C.Wood, Harmonic morphisms between Riemannian manifolds, London Mathem. Society Monographs, Vol. 29, Oxford Science Publications, Clarendon Press, Oxford, 2003.

2.
E. Barletta, S. Dragomir, and H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J. 50 (2001), no. 2, 719-746.

3.
E. Barros and A. Romero, Indefinite Kahler manifolds, Math. Ann. 261 (1982), no. 1, 55-62. crossref(new window)

4.
A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16 (1993), no. 3, 545-556. crossref(new window)

5.
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhauser, Boston, Basel, Berlin, 2002.

6.
G. Calvaruso and D. Perrone, Contact pseudo-metric manifolds, Differential Geom. Appl. 28 (2010), no. 5, 615-634. crossref(new window)

7.
M. Capursi, Quasicosymplectic manifolds, Rev. Roumaine Math. Pures Appl. 32 (1987), no. 1, 27-35.

8.
J. Davidov, Almost contact metric structures and twistor spaces, Houston J. Math. 29 (2003), no. 3, 639-673.

9.
S. Dragomir and D. Perrone, Harmonic Vector Fields: Variational Principles and Differential Geometry, Elsevier, Science Ltd, 2011.

10.
S. Dragomir and D. Perrone, Levi harmonic maps of contact Riemannian manifolds, J. Geome. Anal. 24 (2014), no. 3, 1233-1275. crossref(new window)

11.
B. Fuglede, Harmonic morphisms between semi-Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 31-50.

12.
Y. Ohnita, On pluriharmonicity of stable harmonic maps, J. London Math. Soc. (2) 35 (1987), no. 3, 563-568.

13.
Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. crossref(new window)

14.
D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58. crossref(new window)

15.
D. Perrone, Curvature of K-contact semi-Riemannian manifolds, Canad. Math. Bull. 57 (2014), no. 2, 401-412. crossref(new window)

16.
D. Perrone, Contact pseudo-metric manifolds of constant curvature and CR geometry, Results Math. 2014 Online first 2014, Springer Basel DOI 10.1007/s00025-014-0373-7. crossref(new window)

17.
J. H. Rawnsley, f-structures, f-twistor spaces and harmonic maps, Geometry Seminar L. Bianchi, Lecture Notes in Math. 1164, 84-159, Springer-Verlag, 1985.

18.
K. Yano and S. Ishihara, Invariant submanifolds of an almost contact manifold, Kodai Math. Sem. Rep. 21 (1969), 350-364. crossref(new window)

19.
K. Yano and M. Kon, Structures on Manifolds, World Scientific, Series in Pure Mathematics, vol. 3, 1984.