JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BIHARMONIC CURVES IN FINSLER SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BIHARMONIC CURVES IN FINSLER SPACES
Voicu, Nicoleta;
  PDF(new window)
 Abstract
Biharmonic curves are a generalization of geodesics, with applications in elasticity theory and computer science. The paper proposes a first study of biharmonic curves in spaces with Finslerian geometry, covering the following topics: a deduction of their equations, specific properties and existence of non-geodesic biharmonic curves for some classes of Finsler spaces. Integration of the biharmonic equation is presented for two concrete Finsler metrics.
 Keywords
Finsler space;bienergy;biharmonic curve;
 Language
English
 Cited by
 References
1.
P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., 1993.

2.
A. Balmus, Biharmonic Maps and Submanifolds, Geom. Balkan Press, 2009.

3.
D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, Vol 200, Springer, 2000.

4.
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn., Progress in Mathematics, Vol. 203, Birkhauser, Boston, MA, 2010.

5.
I. Bucataru and R. Miron, Finsler-Lagrange Geometry - Applications to Dynamical Systems, Ed. Acad. Romane, Bucharest, 2007.

6.
R. Caddeo, S. Montaldo, C. Oniciuc, and P. Piu, The Euler-Lagrange method for bihar- monic curves, Mediterr. J. Math. 3 (2006), no. 3-4, 449-465. crossref(new window)

7.
C. Calin and M. Crasmareanu, Slant curves and particles in three-dimensional warped products and their Lancret invariants, Bull. Aust. Math. Soc. 88 (2013), no. 1, 128-142. crossref(new window)

8.
D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, J. Korean Math. Soc. 45 (2008), no. 2, 393-404. crossref(new window)

9.
J. M. Glass, Smooth-curve interpolation: a generalized spline-fit procedure, BIT 6 (1966), 277-293. crossref(new window)

10.
E. Gutkin, Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds, J. Geom. Phys. 61 (2011), no. 11, 2147-2161. crossref(new window)

11.
B. K. P. Horn, The curve of least energy, ACM Trans. Math. Software 9 (1983), no. 4, 441-460. crossref(new window)

12.
J. I. Inoguchi and J. E. Lee, Biminimal curves in 2-dimensional space forms, Commun. Korean Math. Soc. 27 (2012), no. 4, 771-780. crossref(new window)

13.
G. Jiang, 2-harmonic maps and their first and second variational formulas, Note Mat. 28 (2009), 209-232.

14.
S. Maeta, k-harmonic maps into a Riemannian manifold with constant sectional cur- vature, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1835-1847. crossref(new window)

15.
R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applica- tions, Kluwer Acad. Publ., 1994.

16.
X. Mo, An Introduction to Finsler Geometry, World Scientific, 2006.

17.
S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 1-22.

18.
J. Monterde, Surfaces with a family of nongeodesic biharmonic curves, Rend. Mat. Appl. (7) 28(2) (2008), 123-131.

19.
C. Oniciuc, Biharmonic submanifolds in space forms, Habil. Thesis, Univ. "Al. I. Cuza", Iasi, Romania, 2012.

20.
T. Yajima, K. Yamasaki, and H. Nagahama, Finsler metric and elastic constants for weak anisotropic media, Nonlinear Anal. Real World Appl. 12 (2011), no. 6, 3177-3184. crossref(new window)