JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF HYPERTOURNAMENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF HYPERTOURNAMENTS
Guo, Yubao; Surmacs, Michel;
  PDF(new window)
 Abstract
A k-hypertournament H on n vertices, where , is a pair H = (V,A), where V is the vertex set of H and A is a set of k-tuples of vertices, called arcs, such that for all subsets with |S| = k, A contains exactly one permutation of S as an arc. Recently, Li et al. showed that any strong k-hypertournament H on n vertices, where , is vertex-pancyclic, an extension of Moon's theorem for tournaments. In this paper, we prove the following generalization of another of Moon's theorems: If H is a strong k-hypertournament on n vertices, where , and C is a Hamiltonian cycle in H, then C contains at least three pancyclic arcs.
 Keywords
tournament;hypertournament;semicomplete digraph;pancyclic arc;Hamiltonian cycle;
 Language
English
 Cited by
1.
On pancyclic arcs in hypertournaments, Discrete Applied Mathematics, 2016, 215, 164  crossref(new windwow)
2.
Regular Hypertournaments and Arc-Pancyclicity, Journal of Graph Theory, 2016, n/a  crossref(new windwow)
 References
1.
P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959), 2151-2152.

2.
Q. Guo, S. Li, Y. Guo, and H. Li, Out-arc pancyclicity of vertices in tournaments, Discrete Appl. Math. 158 (2010), no. 9, 996-1005. crossref(new window)

3.
G. Gutin and A. Yeo, Hamiltonian paths and cycles in hypertournaments, J. Graph Theory 25 (1997), no. 4, 277-286. crossref(new window)

4.
P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.

5.
H. Li, S. Li, Y. Guo, and M. Surmacs, On the vertex-pancyclicity of hypertournaments, Discrete Appl. Math. 161 (2013), no. 16-17, 2749-2752. crossref(new window)

6.
J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297-301. crossref(new window)

7.
J. W. Moon, On k-cyclic and pancyclic arcs in strong tournaments, J. Combin. Inform. System Sci. 19 (1994), no. 3-4, 207-214.

8.
V. Petrovic and C. Thomassen, Edge disjoint Hamiltonian cycles in hypertournaments, J. Graph Theory 51 (2006), no. 1, 49-52. crossref(new window)

9.
L. Redei, Ein kombinatorischer Satz, Acta Litt. Sci. Szeged 7 (1934), 39-43.

10.
J. Yang, Vertex-pancyclicity of hypertournaments, J. Graph Theory 63 (2009), 338-348.

11.
A. Yeo, The number of pancyclic arcs in a k-strong tournament, J. Graph Theory 50 (2005), no. 3, 212-219. crossref(new window)