MULTIVARIATE COUPLED FIXED POINT THEOREMS ON ORDERED PARTIAL METRIC SPACES

- Journal title : Journal of the Korean Mathematical Society
- Volume 51, Issue 6, 2014, pp.1189-1207
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2014.51.6.1189

Title & Authors

MULTIVARIATE COUPLED FIXED POINT THEOREMS ON ORDERED PARTIAL METRIC SPACES

Lee, Hosoo; Kim, Sejong;

Lee, Hosoo; Kim, Sejong;

Abstract

A partial metric, also called a nonzero self-distance, is motivated by experience from computer science. Besides a lot of properties of partial metric analogous to those of metric, fixed point theorems in partial metric spaces have been studied recently. We establish several kinds of extended fixed point theorems in ordered partial metric spaces with higher dimension under generalized notions of mixed monotone mappings.

Keywords

fixed point;mixed monotone property;partial metric space;

Language

English

Cited by

References

1.

M. Abbas, M. Ali Khan, and S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput. 217 (2010), no. 1, 195-202.

2.

T. Abdeljawad, E. Karapinar, and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1900-1904.

3.

R. P. Agarwal, Z. Kadelburg, and S. Radenovic, On coupled fixed point results in asymmetric G-metric spaces, J. Ineq. Appl. 2013 (2013), 528; doi:10.1186/1029-242X-2013-528.

4.

V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889-4897.

5.

M. Berzig and B. Samet, An extension of coupled fixed point's concept in higher dimension and applications, Comput. Math. Appl. 63 (2012), no. 8, 1319-1334.

6.

T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), no. 7, 1379-1393.

7.

W.-S. Du, Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi- Takahashi's condition in quasiordered metric spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 876372, 9 pp.

8.

J. Harjani, B. Lopez, and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), no. 5, 1749-1760.

9.

M. Imdad, A. Sharma, and K. P. R. Rao, n-tupled coincidence and common fixed point results for weakly contractive mappings in complete metric spaces, Bull. Math. Anal. Appl. 5 (2013), no. 4, 19-39.

10.

Z. Kadelburg, H. K. Nashine, and S. Radenovic, Coupled fixed points in partial metric spaces, J. Adv. Math. Studies 6 (2013), no. 1, 159-172.

11.

E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (2010), no. 12, 3656-3668.

12.

E. Karapinar, A. Roland, J. Martinez-Moreno, and C. Roland, Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 406026, 9 pp.

13.

V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), no. 12, 4341-4349.

14.

N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), no. 3, 983-992.

15.

S. G. Matthews, Partial metric topology, Papers on general topology and applications (Flushing, NY, 1992), 183-197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994.

16.

H. K. Nashine, Z. Kadelburg, R. P. Pathak, and S. Radenovic, Coincidence and fixed point results in ordered G-cone metric spaces, Math. Comput. Modelling 57 (2013), no. 3-4, 701-709.

17.

H. K. Nashine, Z. Kadelburg, and S. Radenovic, Coincidence and fixed point results under generalized weakly contractive condition in partially ordered G-metric spaces, Filomat 27 (2013), no. 7, 1333-1343.

18.

H. K. Nashine, Z. Kadelburg, and S. Radenovic, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling 57 (2013), no. 9-10, 2355-2365.

19.

M. Paknazar, M. E. Gordji, M. D. L. Sen, and S. Vaezpour, N-fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013 (2013), no. 111, 15 pp.

20.

S. Radenovic, Remarks on some coupled fixed point results in partial metric spaces, Nonlinear Funct. Anal. Appl. 18 (2013), no. 1, 39-50.

21.

S. Radenovic, Remarks on some recent coupled coincidence point results in symmetric G- metric spaces, J. Operators 2013 (2013), Art. ID 290525, 8 pages.

22.

S. Radenovic, Remarks on some coupled coincidence point results in partially ordered metric spaces, Arab J. Math. Sci. 20 (2014), no. 1, 29-39.

23.

A. Roldan, J. Martinez-Moreno, and C. Roldan, Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl. 396 (2012), no. 2, 536-545.

24.

B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), no. 12, 4508-4517.

25.

B. Samet, C. Vetro, and F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl. 2013 (2013), no. 5, 11 pp.