JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS
Kim, Nam Kyun; Kwak, Tai Keun; Lee, Yang;
  PDF(new window)
 Abstract
The semicommutative property of rings was introduced initially by Bell, and has done important roles in noncommutative ring theory. This concept was generalized to one of nil-semicommutative by Chen. We first study some basic properties of nil-semicommutative rings. We next investigate the structure of Ore extensions when upper nilradicals are -rigid -ideals, examining the nil-semicommutative ring property of Ore extensions and skew power series rings, where is a ring endomorphism and is a -derivation.
 Keywords
(nil-)semicommutative ring;NI ring;polynomial ring;Ore extension;skew power series ring;
 Language
English
 Cited by
1.
SYMMETRY OVER CENTERS,;;;;

호남수학학술지, 2015. vol.37. 4, pp.377-386 crossref(new window)
1.
SYMMETRY OVER CENTERS, Honam Mathematical Journal, 2015, 37, 4, 377  crossref(new windwow)
 References
1.
A. Alhevaz, M. Habibi, and A. Moussavi, On rings having McCoy-like conditions, Comm. Algebra 40 (2012), no. 4, 1195-1221. crossref(new window)

2.
A. Alhevaz, A. Moussavi, and M. Habibi, Nilpotent elements and skew polynomial rings, Algebra Colloq. 19 (2012), no. 1, 821-840. crossref(new window)

3.
D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. crossref(new window)

4.
R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. crossref(new window)

5.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. crossref(new window)

6.
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. crossref(new window)

7.
W. Chen, On nil-semicommutative rings, Thai J. Math. 9 (2011), no. 1, 39-47.

8.
K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noether- ian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne- Sydney, 1989.

9.
E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224. crossref(new window)

10.
C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226. crossref(new window)

11.
C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399-412. crossref(new window)

12.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra 30 (2002), no. 2, 751-761. crossref(new window)

13.
S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. crossref(new window)

14.
D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), 1250059, 13 pp. crossref(new window)

15.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. crossref(new window)

16.
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.

17.
T. K. Kwak and Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), no. 5, 745-762. crossref(new window)

18.
G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. crossref(new window)

19.
A. R. Nasr-Isfahani, On skew triangular matrix ring, Comm. Algebra 39 (2011), no. 11, 4461-4469. crossref(new window)

20.
L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.

21.
L. Ouyang and H. Chen, On weak symmetric rings, Comm. Algebra 38 (2010), no. 2, 697-713. crossref(new window)

22.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

23.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. crossref(new window)

24.
A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436. crossref(new window)