JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SOME THETA CONSTANTS AND CLASS FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SOME THETA CONSTANTS AND CLASS FIELDS
Shin, Dong Hwa;
  PDF(new window)
 Abstract
We first find a sufficient condition for a product of theta constants to be a Siegel modular function of a given even level. And, when denotes the ray class field of $K
 Keywords
CM-fields;Shimura`s reciprocity law;theta functions;
 Language
English
 Cited by
 References
1.
E. de Shalit and E. Z. Goren, On special values of theta functions of genus two, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 3, 775-799. crossref(new window)

2.
J.-I. Igusa, On the graded ring of theta-constants. II, Amer. J. Math. 88 (1966), no. 1, 221-236. crossref(new window)

3.
H. Y. Jung, J. K. Koo, and D. H. Shin, Ray class invariants over imaginary quadratic fields, Tohoku Math. J. 63 (2011), no. 3, 413-426. crossref(new window)

4.
H. Klingen, Introductory Lectures on Siegel Modular Forms, Cambridge Studies in Advanced Mathematics, 20, Cambridge University Press, Cambridge, 1990.

5.
K. Komatsu, Construction of a normal basis by special values of Siegel modular functions, Proc. Amer. Math. Soc. 128 (2000), no. 2, 315-323. crossref(new window)

6.
D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, 1981.

7.
S. Lang, Elliptic Functions, 2nd edition, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.

8.
G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. 91 (1970), 144-222. crossref(new window)

9.
G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.

10.
G. Shimura, Theta functions with complex multiplication, Duke Math. J. 43 (1976), no. 4, 673-696. crossref(new window)

11.
G. Shimura, On certain reciprocity-laws for theta functions and modular forms, Acta Math. 141 (1978), no. 1-2, 35-71. crossref(new window)

12.
G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Mathematical Series, 46., Princeton University Press, Princeton, N. J., 1998.