JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON KADIRI`S EXPLICIT ZERO FREE REGION FOR RIEMANN ZETA FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON KADIRI`S EXPLICIT ZERO FREE REGION FOR RIEMANN ZETA FUNCTION
Jang, Woo-Jin; Kwon, Soun-Hi;
  PDF(new window)
 Abstract
In 2005 Kadiri proved that the Riemann zeta function does not vanish in the region with $R_0
 Keywords
Riemann zeta function;zero-free regions;Riemann Hypothesis;
 Language
English
 Cited by
1.
Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, Journal of Number Theory, 2015, 157, 329  crossref(new windwow)
 References
1.
K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. (3) 85 (2002), no. 3, 565-633. crossref(new window)

2.
K. Ford, Zero-free regions for the Riemann zeta function, dans: Number Theory for the Millenium, II (Urbana, IL, 2000), 25-56, A K Peters, 2002.

3.
X. Gourdon, The $10^{13}$ first zeros of the Riemann zeta function, and zeros computation at very large height, http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf, 2004.

4.
S. W. Graham, On Linnik's constant, Acta Arith. 39 (1981), no. 2, 163-179.

5.
A. P. Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc. (2) 50 (1948), 107-119.

6.
D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), no. 2, 265-338.

7.
H. Kadiri, Une region explicit sans zero pour la fonction  de Riemann, Acta Arith. 117 (2005), no. 4, 303-339. crossref(new window)

8.
H. Kadiri, A zero density result for the Riemann zeta function, Acta Arith. 160 (2013), no. 2, 185-200. crossref(new window)

9.
J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev Density Theorem, Algebraic Number fields, L-functions and Galois properties, (A. Frohlich, Ed.) pp. 409-464, New York, London Academic Press, 1977.

10.
J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV, Math. Comp. 46 (1986), no. 174, 667-681. crossref(new window)

11.
D. Platt, Computing degree 1 L-functions rigorously, Ph. D. thesis, Univ. of Bristol, 2011.

12.
D. Platt, Computing zeta on the half-line, preprint. arxiv:1305.3087v1.

13.
J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232. crossref(new window)

14.
J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

15.
J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions ${\theta}x$ and ${\varphi}x$, Math. Comp. 29 (1975), 243-269.

16.
S. B. Steckin, The zeros of the Riemann zeta-function, Math. Notes 8 (1970), 706-711. crossref(new window)

17.
E. C. Titchmarsh, The theory of the Riemann zeta-function, second edition revised by D. R. Heath-Brown, Clarendon Press. Oxford, 1986.

18.
C. J. de la Vallee Poussin, Sur la fonction $\zeta(S)$ de Riemann et le nombre des nombres premiers inferieurs a une limite donnee, Mem. Couronnes et Autres Mem. Publ. Acad. Roy. Sci. Lett. Beaux-Arts Belg. 59 (1899-1900), 74 pp.

19.
S. Wedeniwski, The first 10 billion zeros of the Riemann zeta function are calculated and satisfy the Riemann hypothesis, http://www.zetagrid.net.

20.
A. Weil, Sur les "formules explicites" de la theorie des nombres premiers, Comm. Sem. Math. Univ. Lund (1952), 252-265.

21.
T. Xylouris, On Linnik's constant, http://arxiv.org/abs/0906.2749v1, 2009.

22.
T. Xylouris, On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions, Acta Arith. 150 (2011), no. 1, 65-91. crossref(new window)