JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONEAT SUBMODULES AND CONEAT-FLAT MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONEAT SUBMODULES AND CONEAT-FLAT MODULES
Buyukasik, Engin; Durgun, Yilmaz;
  PDF(new window)
 Abstract
A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism can be extended to a homomorphism . M is called coneat-flat if the kernel of any epimorphism is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.
 Keywords
neat submodule;coclosed submodule;coneat submodule;coneat-flat module;absolutely neat module;
 Language
English
 Cited by
1.
ON SOME GENERALIZATIONS OF CLOSED SUBMODULES,;

대한수학회보, 2015. vol.52. 5, pp.1549-1557 crossref(new window)
1.
ON SOME GENERALIZATIONS OF CLOSED SUBMODULES, Bulletin of the Korean Mathematical Society, 2015, 52, 5, 1549  crossref(new windwow)
 References
1.
E. Buyukasik and Y. Durgun, Neat-flat modules, http://arxiv.org/abs/1306.2860.

2.
E. Buyukasik and Y. Durgun, Absolutely s-pure modules and neat-flat modules, Comm. Alg. 43 (2015), no. 2, 384-399. crossref(new window)

3.
T. J. Cheatham and D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175-177. crossref(new window)

4.
J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Basel, 2006.

5.
S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc. 89 (2014), no. 2, 343-352. crossref(new window)

6.
E. Enochs, A note on absolutely pure modules, Canad. Math. Bull. 19 (1976), no. 3, 361-362. crossref(new window)

7.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.

8.
L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131-143. crossref(new window)

9.
A. I. Generalov, Weak and $\omega$-high purities in the category of modules, Mat. Sb. (N.S.) 105(147) (1978), no. 3, 389-402, 463.

10.
T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.

11.
C. Lomp, On the splitting of the dual Goldie torsion theory, Algebra and its applications (Athens, OH, 1999), 377-386, Contemp. Math., 259, Amer. Math. Soc., Providence, RI, 2000.

12.
G. Renault, Etude de certains anneaux lies aux sous-modules complements d'un A- module, C. R. Acad. Sci. Paris 258 (1964), 4888-4890.

13.
J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York, 1979.

14.
L. Salce, Almost perfect domains and their modules, Commutative algebra-Noetherian and non-Noetherian perspectives, 363-386, Springer, New York, 2011.

15.
E. G. Skljarenko, Relative homological algebra in the category of modules, Uspehi Mat. Nauk 33 (1978), no. 3(201), 85-120.

16.
P. F. Smith, Injective modules and prime ideals, Comm. Algebra 9 (1981), no. 9, 989-999. crossref(new window)

17.
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

18.
J. Xu, Flat Covers of Modules, Springer-Verlag, Berlin, 1996.

19.
H. Zoschinger, Koatomare Moduln, Math. Z. 170 (1980), no. 3, 221-232. crossref(new window)

20.
H. Zoschinger, Schwach-injektive Moduln, Period. Math. Hungar. 52 (2006), no. 2, 105-128. crossref(new window)

21.
H. Zoschinger, Schwach-Flache Moduln, Comm. Algebra 41 (2013), no. 12, 4393-4407. crossref(new window)