JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ADMIXABLE OPERATORS AND A TRANSFORM SEMIGROUP ON ABSTRACT WIENER SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ADMIXABLE OPERATORS AND A TRANSFORM SEMIGROUP ON ABSTRACT WIENER SPACE
Chang, Seung Jun; Choi, Jae Gil; Skoug, David;
  PDF(new window)
 Abstract
The purpose of this paper is first of all to investigate the behavior of admixable operators on the product of abstract Wiener spaces and secondly to examine transform semigroups which consist of admix-Wiener transforms on abstract Wiener spaces.
 Keywords
abstract Wiener space;admixable operator;admix-Wiener transform;transform semigroup;
 Language
English
 Cited by
 References
1.
J. E. Bearman, Rotations in the product of two Wiener spaces, Proc. Amer. Math. Soc. 3 (1952), no. 1, 129-137. crossref(new window)

2.
R. H. Cameron and D. A. Storvick, An operator valued Yeh-Wiener integral, and a Wiener integral equation, Indiana Univ. Math. J. 25 (1976), no. 3, 235-258. crossref(new window)

3.
J. G. Choi and S. J. Chang, A rotation of admixable operators on abstract Wiener space with applications, J. Funct. Space Appl. 2013 (2013), Article ID 671909, 12 pages.

4.
D. M. Chung, Scale-invariant measurability in abstract Wiener spaces, Pacific J. Math. 130 (1987), no. 1, 27-40. crossref(new window)

5.
D. M. Chung, C. Park, and D. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), no. 2, 377-391. crossref(new window)

6.
D. L. Cohn, Measure Theory, Second edition, Birkhauser Advanced Texts Basler Lehrbucher, Birkhauser, Boston, 2013.

7.
L. Gross, Abstract Wiener spaces, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 31-42, University of California Press, Berkeley, 1965.

8.
T. Huffman, C. Park, and D. Skoug, Generalized transforms and convolutions, Int. J. Math. Math. Sci. 20 (1997), no. 1, 19-32. crossref(new window)

9.
G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: An L($L_p$, $L_{p{\prime}}$) theory, Nagoya Math. J. 60 (1976), 93-137.

10.
G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157-176. crossref(new window)

11.
G. W. Johnson and D. L. Skoug, Notes on the Feynman integral. II, J. Funct. Anal. 41 (1981), no. 3, 277-289. crossref(new window)

12.
G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continu-ation in several complex variables, Stochastic Analysis and Applications, pp. 217-267, Dekker, New York, 1984.

13.
H.-H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math. 463, Springer, Berlin, 1975.

14.
Y.-J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153-164. crossref(new window)

15.
R. E. A. C. Paley, N. Wiener, and A. Zygmund, Notes on random functions, Math. Z. 37 (1933), no. 1, 647-668. crossref(new window)

16.
C. Park and D. Skoug, A note on Paley-Wiener-Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988), no. 2, 591-601. crossref(new window)

17.
C. Park and D. Skoug, A Kac-Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991), no. 3, 411-427. crossref(new window)

18.
C. Park and D. Skoug, Generalized Feynman integrals: The L($L_2$, $L_2$) theory, Rocky Mountain J. Math. 25 (1995), no. 2, 739-756. crossref(new window)

19.
C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.