JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS
Nowak, Marian;
  PDF(new window)
 Abstract
Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let be the Banach space of all continuous functions such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators . We characterize continuous operators from , provided with the strict topologies () to F, in terms of their representing operator-valued measures.
 Keywords
spaces of vector-valued continuous functions;strict topologies;vector measures;integration operators;
 Language
English
 Cited by
1.
Strongly bounded operators on Crc(X,E) with the strict topology βσ, Indagationes Mathematicae, 2016, 27, 4, 972  crossref(new windwow)
2.
Extension of operators on spaces of vector-valued continuous functions, Indagationes Mathematicae, 2016, 27, 1, 20  crossref(new windwow)
 References
1.
C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.

2.
J. Aguayo and J. Sanchez, The Dunford-Pettis property on vector-valued continuous and bounded functions, Bull. Austr. Math. Soc. 48 (1993), no. 2, 303-311. crossref(new window)

3.
J. Aguayo-Garrido and M. Nova-Yanez, Weakly compact operators and u-additive measures, Ann. Math. Blaise Pascal 7 (2000), no. 2, 1-11.

4.
J. Batt, Applications of the Orlicz-Pettis theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (1969), 907-935.

5.
R. Cristescu, Topological Vector Spaces, Ed. Acad. Bucaresti, Noordhoff Inter. Publ., Leyden 1977.

6.
J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.

7.
N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.

8.
N. Dinculeanu, Vector Measures, Vector Integration and Stochastic Integration in Banach Spaces, John Wiley and Sons Inc., 2000.

9.
R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.

10.
R. Fontenot, Strict topologies for vector-valued function spaces, Canad. J. Math. 26 (1974), no. 4, 841-853. crossref(new window)

11.
A. Katsaras, Continuous linear functionals on spaces of vector-valued functions, Bull. Soc. Math. Greece 15 (1974), 13-19.

12.
A. Katsaras, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313-328. crossref(new window)

13.
A. Katsaras, Locally convex topologies on spaces of continuous vector functions, Math. Nachr. 71 (1976), 211-226. crossref(new window)

14.
A. Katsaras, Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc. 216 (1976), 367-387. crossref(new window)

15.
A. Katsaras and D. B. Liu, Integral representation of weakly compact operators, Pacific J. Math. 56 (1975), no. 2, 547-556. crossref(new window)

16.
S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211. crossref(new window)

17.
S. S. Khurana, Integral representation of a class of operators, J. Math. Anal. Appl. 350 (2009), no. 1, 290-293. crossref(new window)

18.
S. S. Khurana and S. I. Othman, Grothendieck measures, J. London Math. Soc. 39 (1989), no. 3, 481-486.

19.
S. S. Khurana and J. Vielma, Strict topology and perfect measures, Czechoslovak Math. J. 40(115) (1990), no. 1, 1-7. crossref(new window)

20.
M. Nowak and A. Rzepka, Locally solid topologies on spaces of vector-valued continuous functions, Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473-483.

21.
R. Wheeler, A survey of Baire measures and strict topologies, Expo. Math. 2 (1983), no. 2, 97-190.