EXPANDING THE CONVERGENCE DOMAIN FOR CHUN-STANICA-NETA FAMILY OF THIRD ORDER METHODS IN BANACH SPACES

- Journal title : Journal of the Korean Mathematical Society
- Volume 52, Issue 1, 2015, pp.23-41
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2015.52.1.023

Title & Authors

EXPANDING THE CONVERGENCE DOMAIN FOR CHUN-STANICA-NETA FAMILY OF THIRD ORDER METHODS IN BANACH SPACES

Argyros, Ioannis Konstantinos; George, Santhosh; Magrenan, Angel Alberto;

Argyros, Ioannis Konstantinos; George, Santhosh; Magrenan, Angel Alberto;

Abstract

We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica and Neta. These authors extended earlier results by Kou, Li and others. Our convergence analysis extends the applicability of these methods under less computational cost and weaker convergence criteria. Numerical examples are also presented to show that the earlier results cannot apply to solve these equations.

Keywords

family of third order method;Newton-like methods;Banach space;semilocal convergence;majorizing sequences;recurrent relations;recurrent functions;

Language

English

References

1.

S. Amat, A. A. Magrenan, and N. Romero, On a two-step relaxed Newton-type method, App. Math. Comput. 219 (2013), no. 24, 11341-11347.

2.

I. K. Argyros, Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C. K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.

3.

I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), no. 3, 364-387.

4.

I. K. Argyros and S. Hilout, Computational Methods in Nonlinear Analysis, World Scientific Publ. Comp., New Jersey, 2013.

5.

V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: The Halley method, Computing 44 (1990), no. 2, 169-184.

6.

V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing 45 (1990), no. 4, 355-367.

7.

C. Chun, P. Stanica, and B. Neta, Third order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011), no. 6, 1665-1675.

8.

J. A. Ezquerro and M. A. Hernandez, Recurrence relations for Chebyshev-type methods, Appl. Math. Optim. 41 (2000), no. 2, 227-236.

9.

J. M. Gutierrez and M. A. Hernandez, Recurrence relations for the super-Halley method, Computers Math. Appl. 36 (1998), no. 7, 1-8.

10.

J. M. Gutierrez and M. A. Hernandez, Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math. 82 (1997), no. 1-2, 171-183.

11.

J. M. Gutierrez, A. A. Magrenan, and N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput. 221 (2013), 79-88.

12.

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.

13.

J. S. Kou and T. Li, Modified Chebyshev's method free from second derivative for non-linear equations, Appl. Math. Comput. 187 (2007), no. 2, 1027-1032.

14.

J. S. Kou, T. Li, and X. H. Wang, A modification of Newton method with third-order convergence, Appl. Math. comput. 181 (2006), no. 2, 1106-1111.

15.

A. A. Magrenan, Estudio de la dinamica del metodo de Newton amortiguado, PhD Thesis, Servicio de Publicaciones, Universidad de La Rioja, 2013.

16.

17.

J. M. Ortega andW. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic press, New York, 1970.

18.

P. K. Parida, Study of some third order methods for nonlinear equations in Banach spaces, Ph.D. Dessertation, Indian Institute of Technology, Department of Mathematics, Kharagpur, India, 2007.

19.

P. K. Parida and D. K. Gupta, Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl. 345 (2008), 350-361.

20.

F. A. Potra and V. Ptra, Nondiscrete induction and iterative processes, in Research Notes in Mathematics, Vol. 103, Pitman, Boston, 1984.

21.

L. B. Rall, Computational solution of nonlinear operator equations, Robert E. Krieger, New York, 1979.