BROYDEN'S METHOD FOR OPERATORS WITH REGULARLY CONTINUOUS DIVIDED DIFFERENCES

- Journal title : Journal of the Korean Mathematical Society
- Volume 52, Issue 1, 2015, pp.43-65
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2015.52.1.043

Title & Authors

BROYDEN'S METHOD FOR OPERATORS WITH REGULARLY CONTINUOUS DIVIDED DIFFERENCES

Galperin, Anatoly M.;

Galperin, Anatoly M.;

Abstract

We present a new convergence analysis of popular Broyden's method in the Banach/Hilbert space setting which is applicable to non-smooth operators. Moreover, we do not assume a priori solvability of the equation under consideration. Nevertheless, without these simplifying assumptions our convergence theorem implies existence of a solution and superlinear convergence of Broyden's iterations. To demonstrate practical merits of Broyden's method, we use it for numerical solution of three nontrivial infinite-dimensional problems.

Keywords

nonlinear operator equations;Broyden's method;convergence analysis;regular continuity;

Language

English

References

1.

M. Aigner, Discrete Mathematics, American Mathematical Society, Providence, RI, 2007.

2.

C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 (1965), 577-593.

3.

Y. Eidelman, V. Milman, and A. Tsolomitis, Functional Analysis, American Mathematical Society, Providence, RI, 2004.

4.

F. Facchinei and J.-S. Pang, Finite-dimensional Variational Inequalities and Complemetarity Problems, Springrer-Verlag, N.Y., 2003.

5.

A. Galperin, Secant method with regularly continuous divided differences, J. Comput. Appl. Math. 193 (2006), no. 2, 574-595.

6.

A. Galperin, On a class of systems of difference equations and their invariants, J. Difference Equ. Appl. 13 (2007), no. 5, 357-381.

8.

A. Griewank, The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert space, SIAM J. Numer. Anal. 24 (1987), no. 3, 684-705.

9.

P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Program. 48 (1990), no. 2, 161-220.

10.

D. M. Hwang and C. T. Kelley, Convergence of Broyden's method in Banach spaces, SIAM J. Optim. 2 (1992), no. 3, 505-532.

11.

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Elmsford, 1982.

12.

C. T. Kelley, Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995.

13.

C. T. Kelley and E. W. Sachs, Broyden's method for approximate solution of nonlinear integral equation, J. Integral Equations Appl. 9 (1985), no. 1, 25-43.

14.

C. T. Kelley and E. W. Sachs, A quasi-Newton method for elliptic boundary value problems, SIAM J. Numer. Anal. 24 (1987), no. 3, 516-531.

15.

C. T. Kelley and E. W. Sachs, A pointwise quasi-Newton method for unconstrained optimal control problems, Numer. Math. 55 (1989), no. 2, 159-176.

16.

C. T. Kelley and E. W. Sachs, A new proof of superlinear convergence for Broyden's method in Hilbert space, SIAM J. Optim. 1 (1991), no. 1, 146-150.

17.

G. G.Magaril-Il'yaev and V.M. Tikhomirov, Convex Analysis, Theory and Applications, American Mathematical Society, Providence, RI, 2003.

18.

O. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear equations, SIAM J. Appl. Math. 31 (1976), no. 1, 89-92.

19.

G. Pimbley, Positive solutions of a quadratic integral equation, Arch. Ration. Mech. Anal. 24 (1967), 107-127.

20.

L. Qi, On superlinear convergence of quasi-Newton methods for nonsmooth equations, Oper. Res. Lett. 20 (1997), no. 5, 223-228.

22.

W.-H. Yu, A quasi-Newton method in infinite-dimensional spaces and its application for solving a parabolic inverse problem, J. Comput. Math. 16 (1998), no. 4, 305-318.