JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS
Badawi, Ayman; Tekir, Unsal; Yetkin, Ece;
  PDF(new window)
 Abstract
Let R be a commutative ring with . In this paper, we introduce the concept of weakly 2-absorbing primary ideal which is a generalization of weakly 2-absorbing ideal. A proper ideal I of R is called a weakly 2-absorbing primary ideal of R if whenever a, b, and , then or or . A number of results concerning weakly 2-absorbing primary ideals and examples of weakly 2-absorbing primary ideals are given.
 Keywords
primary ideal;weakly primary ideal;prime ideal;weakly prime ideal;2-absorbing ideal;n-absorbing ideal;weakly 2-absorbing ideal;2-absorbing primary ideal;weakly 2-absorbing primary ideal;
 Language
English
 Cited by
1.
ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING, Journal of the Korean Mathematical Society, 2016, 53, 6, 1225  crossref(new windwow)
2.
ON 𝜙-n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS, Journal of the Korean Mathematical Society, 2016, 53, 3, 549  crossref(new windwow)
3.
Weakly Classical Prime Submodules, Kyungpook mathematical journal, 2016, 56, 4, 1085  crossref(new windwow)
4.
On n-absorbing submodules of modules over commutative rings, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57, 3, 679  crossref(new windwow)
5.
On (m, n)-absorbing ideals of commutative rings, Proceedings - Mathematical Sciences, 2017, 127, 2, 251  crossref(new windwow)
 References
1.
D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696. crossref(new window)

2.
D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.

3.
D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672. crossref(new window)

4.
S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005), no. 3, 423-429.

5.
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. crossref(new window)

6.
A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.

7.
A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutativerings, Bull. Korean Math. Soc. (in press)

8.
A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83-91. crossref(new window)

9.
M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279. crossref(new window)

10.
R. Gilmer, Multiplicative Ideal Theory, Queen's Papers Pure Appl. Math. 90, Queen's University, Kingston, 1992.

11.
J. Huckaba, Rings with Zero-Divisors, New York/Basil: Marcel Dekker, 1988.

12.
S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012), no. 5-8, 265-271.