JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SUBFIELDS OF GK AND GENERALIZED GK FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SUBFIELDS OF GK AND GENERALIZED GK FUNCTION FIELDS
Danisman, Yusuf; Ozdemir, Mehmet;
  PDF(new window)
 Abstract
In this article, we show that many of the genera that Giulietti and Fanali obtained from subfields of the GK curve can be obtained by using similar techniques used by Garcia, Stichtenoth and Xing. In the meantime, we obtain some new genera from the subfields of GK and generalized GK function fields.
 Keywords
algebraic curves;function field;automorphism group;
 Language
English
 Cited by
1.
On the genus spectrum of maximal curves over finite fields, Journal of Discrete Mathematical Sciences and Cryptography, 2015, 18, 5, 513  crossref(new windwow)
 References
1.
M. Abdon, J. Bezerra, and L. Quoos, Further examples of maximal curves, J. Pure Appl. Algebra 213 (2009), no. 6, 1192-1196. crossref(new window)

2.
M. Abdon and L. Quoos, On the genera of subfields of the Hermitian function field, Finite Fields Appl. 10 (2004), no. 3, 271-284. crossref(new window)

3.
I. Duursma and K.-H. Mak, On maximal curves which are not Galois subcovers of the Hermitian curve, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 3, 453-465. crossref(new window)

4.
S. Fanali and M. Giulietti, Quotient curves of the GK curve, Adv. Geom. 12 (2012), no. 2, 239-268.

5.
A. Garcia, C. Guneri, and H. Stichtenoth, A generalization of the Giulietti-Korchmaros maximal curve, Adv. Geom. 10 (2010), no. 3, 427-434.

6.
A. Garcia, H. Stichtenoth, and C.-P. Xing, On subfields of the Hermitian function field, Compositio Math. 120 (2000), no. 2, 137-170. crossref(new window)

7.
M. Giulietti and G. Korchmaros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), no. 1, 229-245. crossref(new window)

8.
C. Guneri, M.Ozdemir, and H. Stichtenoth, The automorphism group of the generalized Giulietti-Korchmaros function field, Adv. Geom. 13 (2013), no. 2, 369-380.

9.
G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algebriques sur les corps finis, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), no. 16, 729-732.

10.
H. G. Ruck and H. Stichtenoth, Characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.

11.
H. Stichtenoth, Uber die Automorphismengruppe eines algebraischen Funktionenkorpers von Primzahlcharakteristik. I, Arch. Math. 24 (1973), 527-544. crossref(new window)

12.
H. Stichtenoth, Uberber die Automorphismengruppe eines algebraischen Funktionenkorpers von Primzahlcharakteristik. II, Arch. Math. 24 (1973), 615-631. crossref(new window)

13.
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 2009.