JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED MCKAY QUIVERS, ROOT SYSTEM AND KAC-MOODY ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED MCKAY QUIVERS, ROOT SYSTEM AND KAC-MOODY ALGEBRAS
Hou, Bo; Yang, Shilin;
  PDF(new window)
 Abstract
Let Q be a finite quiver and a finite abelian group. Assume that and are the generalized Mckay quiver and the valued graph corresponding to (Q, G) respectively. In this paper we discuss the relationship between indecomposable -representations and the root system of Kac-Moody algebra . Moreover, we may lift G to such that embeds into the fixed point algebra and as a -module is integrable.
 Keywords
generalized McKay quiver;representation of quiver;root system;Kac-Moody algebra;
 Language
English
 Cited by
 References
1.
I. Assem, D. Simson, and A. Skowronski, Elements of Representation Theory of Asso- ciative Algebras. Vol. 1, Cambridge University Press, 2006.

2.
M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511-531. crossref(new window)

3.
M. Auslander, I. Reiten, and S. O. Smalo, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., Vol. 36, Cambridge University Press, 1995.

4.
W. Crawley-Boevey and M. P. Holland, Noncommutative deformations of Kleinian sin- gularities, Duke Math. J. 92 (1998), no. 3, 605-635. crossref(new window)

5.
L. Demonet, Skew group algebras of path algebras and preprojective algebras, J. Algebra 323 (2010), no. 4, 1052-1059. crossref(new window)

6.
B. Deng, J. Du, B. Parshall, and J. Wang, Finite Dimensional Algebras and Puantum Groups, Math. Surveys and Monographs 150, American Mathematical Society, Providence, 2008.

7.
V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, 57 pp.

8.
J. Guo, On the McKay quivers and m-Cartan Matrices, Sci. China Ser. A 52 (2009), no. 3, 511-516. crossref(new window)

9.
J. Guo and Martiinez-Villa, Algebra pairs associated to McKay quivers, Comm. Algebra 30 (2002), no. 2, 1017-1032. crossref(new window)

10.
B. Hou and S. Yang, Skew group algebras of deformed preprojective algebras, J. Algebra 332 (2011), 209-228. crossref(new window)

11.
A. Hubery, Representations of quiver respecting a quiver automorphism and a of Kac, Ph. D. thesis, Leeds Univeraity, 2002.

12.
A. Hubery, Quiver representations respecting a quiver automorphism: a generalisation of a theorem of Kac, J. London Math. Soc. 69 (2004), no. 1, 79-96. crossref(new window)

13.
V. G. Kac, Infinite Dimensional Lie Algebras, 3rd edn, Cambridge University Press, Cambridge, 1990.

14.
V. G. Kac and S. P. Wang, On automorphisms of Kac-Moody algebras and groups, Adv. Math. 92 (1992), no. 2, 129-195. crossref(new window)

15.
G. Lusztig, Affine quivers and canonical bases, Inst. Hautes Etudes Sci. Publ. Math. 76 (1992), 111-163. crossref(new window)

16.
J. McKay, Graphs, singularities and finite groups, Proc. Sympos. Pure Math., vol. 37, pp. 183-186, Amer. Math. Soc., Providence, RI, 1980.

17.
M. Reid, McKay correspondance, arXiv:math.AG/9702016.

18.
I. Reiten and C. Riedtmann, Skew group algebras in the representation theory of Artin algebras, J. Algebra 92 (1985), no. 1, 224-282. crossref(new window)