JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TRANSLATION AND HOMOTHETICAL SURFACES IN EUCLIDEAN SPACE WITH CONSTANT CURVATURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TRANSLATION AND HOMOTHETICAL SURFACES IN EUCLIDEAN SPACE WITH CONSTANT CURVATURE
Lopez, Rafael; Moruz, Marilena;
  PDF(new window)
 Abstract
We study surfaces in Euclidean space which are obtained as the sum of two curves or that are graphs of the product of two functions. We consider the problem of finding all these surfaces with constant Gauss curvature. We extend the results to non-degenerate surfaces in Lorentz-Minkowski space.
 Keywords
translation surface;homothetical surface;mean curvature;Gauss curvature;
 Language
English
 Cited by
 References
1.
J. L. M. Barbosa and A. Gervasio Colares, Minimal Surfaces in $R^3$, Lecture Notes in Mathematics, 1195, Springer-Verlag, Berlin, 1986.

2.
J. G. Darboux, Theorie Generale des Surfaces, Livre I, Gauthier-Villars, Paris, 1914.

3.
F. Dillen, I. Van de Woestyne, L. Verstraelen, and J. T. Walrave, The surface of Scherk in $E^3$ : a special case in the class of minimal surfaces defined as the sum of two curves, Bull. Inst. Math. Acad. Sin. 26 (1998), no. 4, 257-267.

4.
L. Jiu and H. Sun, On minimal homothetical hypersurfaces, Colloq. Math. 109 (2007), no. 2, 239-249. crossref(new window)

5.
H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), no. 1-2, 141-149. crossref(new window)

6.
R. Lopez, Differential Geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), no. 1, 44-107.

7.
J. C. C. Nitsche, Lectures on Minimal Surfaces. Vol. 1, Cambridge University Press, Cambridge, 1989.

8.
H. F. Scherk, Bemerkungen uber die kleinste Flache innerhalb gegebener Grenzen, J. Reine Angew. Math. 13 (1835), 185-208.

9.
I. Van de Woestyne, A new characterization of the helicoids, Geometry and topology of submanifolds, V (Leuven/Brussels, 1992), 267-273, World Sci. Publ., River Edge, NJ, 1993.

10.
I. Van de Woestyne, Minimal homothetical hypersurfaces of a semi-Euclidean space, Results Math. 27 (1995), no. 3-4, 333-342. crossref(new window)