JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMAL CONTROL PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES WITH BOUNDARY CONDITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMAL CONTROL PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES WITH BOUNDARY CONDITIONS
Jeong, Jin-Mun; Ju, Eun-Young; Kim, Hyun-Min;
  PDF(new window)
 Abstract
In this paper, we study optimal control problems for parabolic hemivariational inequalities of dynamic elasticity and investigate the continuity of the solution mapping from the given initial value and control data to trajectories. We show the existence of an optimal control which minimizes the quadratic cost function and establish the necessary conditions of optimality of an optimal control for various observation cases.
 Keywords
hemivariational inequality;existence of solution;boundary stabilization;decay rates;
 Language
English
 Cited by
 References
1.
N. U. Ahmed, Optimization and Identification of Systems Governed by Evolution Equations on Banach Space, Longman Scientific and Techniacal, 1988.

2.
J. P. Aubin, Un theoreme de compasite, C. R. Acad. Sci. 256 (1963), 5042-5044.

3.
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Nordhoff Leiden, Netherlands, 1976.

4.
V. Barbu, Optimal control of variational inequalities, RResearch Notes in Mathematics, 100. Pitman (Advanced Publishing Program), Boston, MA, 1984.

5.
V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press Limited, 1993.

6.
F. Bonnans and D. Tiba, Pontryagin's principle in the control of semilinear elliptic variational inequalities, Appl. Math. Optim. 23 (1991), no. 3, 299-312. crossref(new window)

7.
H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace de Hilbert, North Holland, 1973.

8.
R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology, in: Evolution Problems, Vol. 5. Springer-Verlag, 1992.

9.
J. Hwang, Parameter identification problems for an extensible beam equation, J. Math. Anal. Appl. 359 (2009), no. 2, 682-695. crossref(new window)

10.
J. Hwang and S. Nakagiri, Optimal control problems for Kirchhoff type equation with a damping term, Nonlinear Anal. 72 (2010), no. 3-4, 1621-1631. crossref(new window)

11.
I. Karatzas and G. Stampaccia, An Introduction to Variational Inequalities and Their Applications, New York, Academic Press, 1980.

12.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag Berlin new-York, 1971.

13.
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. I, II, Springer-Verlag, Berlin, Heidelberg, New york, 1971.

14.
M. Miettinen, A parabolic hemivariational inequality, Nonlinear Anal. 26 (1996), no. 4, 725-734. crossref(new window)

15.
M. Miettinen and P. D. Panagiotopoulos, On parabolic hemivariational inequalities and applications, Nonlinear Anal. 35 (1999), no. 7, 885-915. crossref(new window)

16.
S. Migorski and A. Ochal, Vanishing viscosity for hemivariational inequalities modeling dynamic problems in elasticity, Nonlinear Anal. 66 (2007), no. 8, 1840-1852. crossref(new window)

17.
J. Rauch, Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc. 64 (1977), no. 2, 277-282. crossref(new window)

18.
M. Shillor, Recent Advances in Contact Mechanics, Pergamon Press, 1998.

19.
P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applicatons, Convex and Nonconvex Energy Functions, Birkhauser, Basel, Boston, 1985.

20.
P. D. Panagiotopoulos, Modelling of nonconvex nonsmooth energy problems. Dynamic hemivariational inequalities with impact effects, J. Comput. Appl. Math. 63 (1995), no. 1-3, 123-138. crossref(new window)

21.
D. G. Park, J. M. Jeong, and S. H. Park, Regularity of parabolic hemivariational inequalities with boundary conditions, J. Inequal. & Appl. 2009 (2009), Article ID 207873, 22 pp.

22.
J. Y. Park, H. M. Kim, and S. H. Park, On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities, Nonlinear Anal. 55 (2003), no. 1-2, 103-113. crossref(new window)

23.
J. Y. Park and S. H. Park, On solutions for a hyperbolic system with differential inclusion and memory source term on the boundary, Nonlinear Anal. 57 (2004), no. 3, 459-472. crossref(new window)