JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SOME CLASSES OF ℝ-COMPLEX HERMITIAN FINSLER SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SOME CLASSES OF ℝ-COMPLEX HERMITIAN FINSLER SPACES
Aldea, Nicoleta; Campean, Gabriela;
  PDF(new window)
 Abstract
In this paper, we investigate the -complex Hermitian Finsler spaces, emphasizing the differences that separate them from the complex Finsler spaces. The tools used in this study are the Chern-Finsler and Berwald connections. By means of these connections, some classes of the -complex Hermitian Finsler spaces are defined, (e.g. weakly Khler, Khler, strongly Khler). Here the notions of Khler and strongly Khler do not coincide, unlike the complex Finsler case. Also, some kinds of Berwald notions for such spaces are introduced. A special approach is devoted to obtain the equivalence conditions for an -complex Hermitian Finsler space to become a weakly Berwald or Berwald. Finally, we obtain the conditions under which an -complex Hermitian Finsler space with Randers metric is Berwald. We get some clear examples which illustrate the interest for this work.
 Keywords
-complex Hermitian Finsler space;Berwald space;Randers space;
 Language
English
 Cited by
1.
Geodesic Curves on $${\mathbb{R}}$$ R -Complex Finsler Spaces, Results in Mathematics, 2016, 70, 1-2, 15  crossref(new windwow)
 References
1.
M. Abate and G. Patrizio, Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, 1994.

2.
T. Aikou, Finsler geometry on complex vector bundles, A sampler of Riemann-Finsler geometry, 83-105, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004.

3.
N. Aldea and G. Munteanu, On complex Finsler spaces with Randers metric, J. Korean Math. Soc. 46 (2009), no. 5, 949-966.

4.
N. Aldea and G. Munteanu, On complex Landsberg and Berwald spaces, J. Geom. Phys. 62 (2012), no. 2, 368-380. crossref(new window)

5.
N. Aldea and G. Munteanu, On complex Douglas spaces, J. Geom. Phys. 66 (2013), 80-93. crossref(new window)

6.
N. Aldea and G. Munteanu, New candidates for a Hermitian approach of Gravity, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 9, 1350041, 22 pp.

7.
N. Aldea and M. Purcaru, ${\mathbb{R}}$-complex Finsler spaces with (${\alpha}$, ${\beta}$)-metric, Novi Sad J. Math. 38 (2008), no. 1, 1-9.

8.
D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200. Springer-Verlag, New York, 2000.

9.
A. Bejancu and H. R. Faran, Geometry of pseudo-Finsler submanifolds, Kluwer Academic Publishers, Dordrecht, 2000.

10.
L. Berwald, Uber Finslersche und Cartansche Geometrie. IV, Ann. of Math. 48 (1947), 755-781. crossref(new window)

11.
B. Chen and Y. Shen, Kahler Finsler metrics are actually strongly Kahler, Chin. Ann. Math. Ser. B 30 (2009), no. 2, 173-178. crossref(new window)

12.
B. Chen and Y. Shen, On complex Randers metrics, Internat. J. Math. 21 (2010), no. 8, 971-986. crossref(new window)

13.
S. Kobayashi, Complex Finsler vector bundles, Finsler geometry (Seattle, WA, 1995), 145-153, Contemp. Math., 196, Amer. Math. Soc., Providence, RI, 1996.

14.
M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 1986.

15.
G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Fundamental Theories of Physics, 141. Kluwer Academic Publishers, Dordrecht, 2004.

16.
G. Munteanu and M. Purcaru, On ${\mathbb{R}}$-complex Finsler spaces, Balkan J. Geom. Appl. 14 (2009), no. 1, 52-59.

17.
G. B. Rizza, Stutture di Finsler di tipo quasi Hermitiano, Riv. Mat. Univ. Parma 4 (1963), 83-106.

18.
H. L. Royden, Complex Finsler metrics, Complex differential geometry and nonlinear differential equations (Brunswick, Maine, 1984), 119-124, Contemp. Math., 49, Amer. Math. Soc., Providence, RI, 1986.

19.
H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.

20.
Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.

21.
Z. Szabo, Positive definite Berwald spaces, Tensor (N.S.) 35 (1981), no. 1, 25-39.

22.
P. M. Wong, Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics, Imperial College Press, 2011.

23.
P. M. Wong and C. Zhong, On weighted complex Randers metrics, Osaka J. Math. 48 (2011), no. 3, 589-612.