JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INSERTION-OF-FACTORS-PROPERTY WITH FACTORS MAXIMAL IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INSERTION-OF-FACTORS-PROPERTY WITH FACTORS MAXIMAL IDEALS
Jin, Hai-Lan; Jung, Da Woon; Lee, Yang; Ryu, Sung Ju; Sung, Hyo Jin; Yun, Sang Jo;
  PDF(new window)
 Abstract
Insertion-of-factors-property, which was introduced by Bell, has a role in the study of various sorts of zero-divisors in noncommutative rings. We in this note consider this property in the case that factors are restricted to maximal ideals. A ring is called IMIP when it satisfies such property. It is shown that the Dorroh extension of A by K is an IMIP ring if and only if A is an IFP ring without identity, where A is a nil algebra over a field K. The structure of an IMIP ring is studied in relation to various kinds of rings which have roles in noncommutative ring theory.
 Keywords
IMIP ring;maximal ideal;IFP ring;Dorroh extension;idempotent;
 Language
English
 Cited by
1.
Reflexivity with maximal ideal axes, Communications in Algebra, 2016  crossref(new windwow)
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

2.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. crossref(new window)

3.
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. crossref(new window)

4.
S. Chhawchharia and M. B. Rege, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

5.
J. L. Dorroh, Concerning adjunctins to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88. crossref(new window)

6.
K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.

7.
J. Hannah and K. C. O'meara, Maximal quotient rings of prime group algebras, Proc. Amer. Math. Soc. 65 (1977), no. 1, 1-7. crossref(new window)

8.
C. Huh, S. H. Jang, C. O. Kim, and Y. Lee, Rings whose maximal one-sided ideals are two sided, Bull. Korean Math. Soc. 39 (2002), no. 3, 411-422.

9.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. crossref(new window)

10.
S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. crossref(new window)

11.
Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. crossref(new window)

12.
M. Kheradmand, H. K. Kim, T. K. Kwak, and Y. Lee, Reflexive property on nil ideals, Submitted.

13.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. crossref(new window)

14.
N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. crossref(new window)

15.
L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.

16.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. crossref(new window)

17.
A. Smoktunowicz, A simple nil ring exists, Comm. Algebra 30 (2002), no. 1, 27-59. crossref(new window)