JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS
HONG, CHAN YONG; KIM, NAM KYUN; LEE, YANG;
  PDF(new window)
 Abstract
In this note we study the structures of power-serieswise Armendariz rings and IFP rings when they are skewed by ring endomor-phisms (or automorphisms). We call such rings skew power-serieswise Armendariz rings and skew IFP rings, respectively. We also investigate relationships among them and construct necessary examples in the process. The results argued in this note can be extended to the ordinary ring theoretic properties of power-serieswise Armendariz rings, IFP rings, and near-related rings.
 Keywords
skew power-serieswise Armendariz ring;skew IFP ring;
 Language
English
 Cited by
 References
1.
R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. crossref(new window)

2.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. crossref(new window)

3.
M. Baser, A. Harmanci, and T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45 (2008), no. 2, 285-297. crossref(new window)

4.
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. crossref(new window)

5.
G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32. crossref(new window)

6.
G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88. crossref(new window)

7.
J. S. Cheon, E. J. Kim, C. I. Lee, and Y. H. Shin, Characterizations of elements in prime radicals of skew polynomial rings and skew Laurent polynomial rings, Bull. Korean Math. Soc. 48 (2011), no. 2, 277-290. crossref(new window)

8.
W. Cortes, Skew Armendariz rings and annihilator ideals of skew polynomial rings, Algebraic structures and their representations, 249259, Contemp. Math., 376, Amer. Math. Soc., Providence, RI, 2005.

9.
W. Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. (2008), Art. ID 496720, 9 pp.

10.
D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 22 (1971), 427-433.

11.
E. Hamann and R. G. Swan, Two counterexamples in power series rings, J. Algebra 100 (1986), no. 1, 260-264. crossref(new window)

12.
C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122. crossref(new window)

13.
C. Y. Hong, N. K. Kim, and Y. Lee, Radicals of skew polynomial rings and skew Laurent polynomial rings, J. Algebra 331 (2011), 428-448. crossref(new window)

14.
C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253-266. crossref(new window)

15.
C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. crossref(new window)

16.
N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. crossref(new window)

17.
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.

18.
T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.

19.
T. Y. Lam, A. Leroy, and J. Matcsuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506. crossref(new window)

20.
G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27 (1999), no. 9, 4411-4423. crossref(new window)

21.
J. Matczuk, A characterization of $\sigma$-rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336. crossref(new window)

22.
L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.

23.
A. Moussavi, On the semiprimitivity of skew polynomial rings, Proc. Edinburgh Math. Soc. 36 (1993), no. 2, 169-178. crossref(new window)

24.
K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783-794. crossref(new window)

25.
K. R. Pearson, W. Stephenson, and J. F. Watters, Skew polynomials and Jacobson rings, Proc. London Math. Soc. (3) 42 (1981), no. 3, 559-576.

26.
J. Ram, On the semisimplicity of skew polynomial rings, Proc. Amer. Math. Soc. 90 (1984), no. 3, 347-351. crossref(new window)

27.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

28.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. crossref(new window)