JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE GROWTH OF ALGEBRAIC POLYNOMIALS IN THE WHOLE COMPLEX PLANE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE GROWTH OF ALGEBRAIC POLYNOMIALS IN THE WHOLE COMPLEX PLANE
ABDULLAYEV, F.G.; OZKARTEPE, N.P.;
  PDF(new window)
 Abstract
In this paper, we study the estimation for algebraic polynomials in the bounded and unbounded regions bounded by piecewise Dini smooth curve having interior and exterior zero angles.
 Keywords
algebraic polynomials;conformal mapping;Dini smooth curve;
 Language
English
 Cited by
 References
1.
F. G. Abdullayev, Dissertation, Ph.D., Donetsk, 1986.

2.
F. G. Abdullayev, On some properties of orthogonal polynomials over an area in domains ofthe complex plane. III, Ukrain. Mat. Zh. 53 (2001), no. 12, 1588-1599; translation inUkrainian Math. J. 53 (2001), no. 12, 1934-1948.

3.
F. G. Abdullayev and V. V. Andrievskii, On the orthogonal polynomials in the domains with K-quasiconformal boundary, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk 1 (1983), 3-7.

4.
F. G. Abdullayev and P. Ozkartepe, An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane, J. Inequal. Appl. 2013 (2013), 7 pp. crossref(new window)

5.
L. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, NJ: Van Nostrand, 1966.

6.
V. V. Andrievskii, Uniform convergence of Bieberbach polynomials in domains with piecewise-quasiconformal boundary, Theory of mappings and approximation of functions, 3-18, "Naukova Dumka", Kiev, 1983.

7.
V. V. Andrievskii, Constructive characterization of harmonic functions in domains with a quasiconformal boundary, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 2, 425-438.

8.
V. V. Andrievskii, V. I. Belyi, and V. K. Dzyadyk, Conformal invariants in constructive theory of functions of complex variable, World Federation Publishers Company, Atlanta, GA, 1995.

9.
V. V. Andrievskii and H. P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer Verlag New York Inc., 2002.

10.
D. Gaier, On the convergence of the Bieberbach polynomials in regions with corners, Constr. Approx. 4 (1988), no. 3, 289-305. crossref(new window)

11.
E. Hille, G. Szego, and J. D. Tamarkin, On some generalization of a theorem of A. Markoff, Duke Math. J. 3 (1937), no. 4, 729-739. crossref(new window)

12.
D. Jackson, Certain problems of closest approximation, Bull. Amer. Math. Soc. 39 (1933), no. 12, 889-906. crossref(new window)

13.
O. Lehto and K. I. Virtanen, Quasiconformal Mapping in the Plane, Springer Verlag, Berlin, 1973.

14.
D. I. Mamedhanov, Inequalities of S. M. Nikol'skii type for polynomials of a complex variable on curves, Dokl. Akad. Nauk SSSR 214 (1974), 34-37.

15.
S. N. Mergelyan, Certain questions of the constructive functions of theory, Trudy Mat. Inst. Steklov. 37 (1951), 3-91.

16.
S. M. Nikol'skii, Approximation of Functions of Several Variable and Imbeding Theorems, Springer-Verlag, New-York, 1975.

17.
Ch. Pommerenke, Univalent Functions, Gottingen, Vandenhoeck & Ruprecht, 1975.

18.
I. E. Pritsker, Comparing norms of polynomials in one and several variables, J. Math. Anal. Appl. 216 (1997), no. 2, 685-695. crossref(new window)

19.
S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A Math. 395 (1966), 30 pp.

20.
N. Stylianopoulos, Strong asymptotics for Bergman polynomials over domains with corners and applications, Constr. Approx. 38 (2013), no. 1, 59-100. crossref(new window)

21.
P. K. Suetin, Order comparison of various norms of polynomials in a complex region, Ural. Gos. Univ. Mat. Zap. 5 (1966), 91-100.

22.
P. K. Suetin, Some estimates of polynomials, orthogonal on a contour, with peculiarities of weight and contour, Sibirsk. Mat. Z. 8 (1967), 1070-1078.

23.
J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, American Mathematical Society, Providence, R.I. 1960.

24.
S. E. Warschawski, Uber das randverhalten der ableitung der ableitung der abbildungsfunktion bei konformer abbildung, Math. Z. 35 (1932), no. 1, 321-456. crossref(new window)