JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RELATIVE AND TATE COHOMOLOGY OF DING MODULES AND COMPLEXES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RELATIVE AND TATE COHOMOLOGY OF DING MODULES AND COMPLEXES
ZHANG, CHUNXIA;
  PDF(new window)
 Abstract
We investigate the relative and Tate cohomology theories with respect to Ding modules and complexes, consider their relations with classical and Gorenstein cohomology theories. As an application, the Avramov-Martsinkovsky type exact sequence of Ding modules is obtained.
 Keywords
Ding projective (injective) module;relative cohomology;Tatecohomology;Avramov-Martsinkovsky type exact sequence;
 Language
English
 Cited by
 References
1.
L. L. Avramov and H.-B. Foxby, Homological dimension of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129-155. crossref(new window)

2.
L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85 (2002), no. 2, 393-440. crossref(new window)

3.
N. Q. Ding, Y. L. Li, and L. X. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. crossref(new window)

4.
E. E. Enochs and O. M. G. Jenda, Resolutions by Gorenstein injective and projective modules and modules of finite injective dimension over Gorenstein rings, Comm. Algebra 23 (1995), no. 3, 869-877. crossref(new window)

5.
E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics no. 30, Walter De Gruyter, New York, 2000.

6.
J. Gillespie, Model structures on modules over Ding-Chen rings, Homology Homotopy Appl. 12 (2010), no. 1, 61-73. crossref(new window)

7.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.

8.
H. Holm, Gorenstein derived functors, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913-1923. crossref(new window)

9.
A. Iacob, Generalized Tate cohomology, Tsukuba J. Math. 29 (2005), no. 2, 389-404.

10.
N. Mahdou and M. Tamekkante, Strongly Gorenstein flat modules and dimensions, Chin. Ann. Math. Ser. B 32 (2011), no. 4, 533-548. crossref(new window)

11.
L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. crossref(new window)

12.
K. Pinzon, Absolutely pure covers, Comm. Algebra 36 (2008), 2186-2194. crossref(new window)

13.
W. Ren, Z. K. Liu, and G. Yang, Derived categories with respect to Ding modules, J. Algebra Appl. 12 (2013), no. 6, 1350021, 14 pp.

14.
O. Veliche, Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1257-1283.

15.
Z. P. Wang, Reseaches of relative homological properties in the category of complexes, Ph.D. thesis, Northwest Normal University, China, 2010.

16.
C. H. Yang, Strongly Gorenstein flat and Gorenstein FP-injective modules, Turkish J. Math. 37 (2013), no. 2, 218-230.

17.
G. Yang, Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc. 49 (2012), no. 1, 31-47. crossref(new window)

18.
G. Yang, Z. K. Liu, and L. Liang, Ding projective and Ding injective modules, Algebra Colloq. 20 (2013), no. 4, 601-612. crossref(new window)